Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzf | GIF version |
Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
fzf | ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3025 | . . . 4 ⊢ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ⊆ ℤ | |
2 | zex 8254 | . . . . 5 ⊢ ℤ ∈ V | |
3 | 2 | elpw2 3911 | . . . 4 ⊢ ({𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ ↔ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ⊆ ℤ) |
4 | 1, 3 | mpbir 134 | . . 3 ⊢ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ |
5 | 4 | rgen2w 2377 | . 2 ⊢ ∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ |
6 | df-fz 8875 | . . 3 ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) | |
7 | 6 | fmpt2 5827 | . 2 ⊢ (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)} ∈ 𝒫 ℤ ↔ ...:(ℤ × ℤ)⟶𝒫 ℤ) |
8 | 5, 7 | mpbi 133 | 1 ⊢ ...:(ℤ × ℤ)⟶𝒫 ℤ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ∈ wcel 1393 ∀wral 2306 {crab 2310 ⊆ wss 2917 𝒫 cpw 3359 class class class wbr 3764 × cxp 4343 ⟶wf 4898 ≤ cle 7061 ℤcz 8245 ...cfz 8874 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-cnex 6975 ax-resscn 6976 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-neg 7185 df-z 8246 df-fz 8875 |
This theorem is referenced by: fzen 8907 fzof 9001 fzoval 9005 |
Copyright terms: Public domain | W3C validator |