![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbidv | GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 20-Nov-1994.) |
Ref | Expression |
---|---|
ralbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | ralbid 2324 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wral 2306 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-ral 2311 |
This theorem is referenced by: ralbii 2330 2ralbidv 2348 rexralbidv 2350 r19.32vdc 2459 raleqbi1dv 2513 raleqbidv 2517 cbvral2v 2541 rspc2 2661 rspc3v 2665 reu6i 2732 reu7 2736 sbcralt 2834 sbcralg 2836 raaanlem 3326 r19.12sn 3436 2ralunsn 3569 elintg 3623 elintrabg 3628 eliin 3662 bnd2 3926 poeq1 4036 soeq1 4052 frforeq1 4080 frforeq3 4084 frirrg 4087 frind 4089 weeq1 4093 reusv3 4192 ontr2exmid 4250 reg2exmidlema 4259 posng 4412 ralxpf 4482 cnvpom 4860 funcnvuni 4968 dff4im 5313 dff13f 5409 eusvobj2 5498 ofreq 5715 smoeq 5905 recseq 5921 tfr0 5937 tfrlemiex 5945 nneneq 6320 ac6sfi 6352 elinp 6572 prloc 6589 cauappcvgprlemladdru 6754 cauappcvgprlemladdrl 6755 caucvgpr 6780 caucvgprpr 6810 caucvgsrlemgt1 6879 caucvgsrlemoffres 6884 caucvgsr 6886 axcaucvglemcau 6972 axcaucvglemres 6973 nnsub 7952 indstr 8536 ublbneg 8548 lbzbi 8551 iccsupr 8835 cau4 9712 caubnd2 9713 clim 9802 clim2 9804 clim2c 9805 clim0c 9807 climabs0 9828 cn1lem 9834 sqrt2irr 9878 bj-omtrans 10081 |
Copyright terms: Public domain | W3C validator |