ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbid Structured version   GIF version

Theorem rexbid 2319
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1 xφ
ralbid.2 (φ → (ψχ))
Assertion
Ref Expression
rexbid (φ → (x A ψx A χ))

Proof of Theorem rexbid
StepHypRef Expression
1 ralbid.1 . 2 xφ
2 ralbid.2 . . 3 (φ → (ψχ))
32adantr 261 . 2 ((φ x A) → (ψχ))
41, 3rexbida 2315 1 (φ → (x A ψx A χ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wnf 1346   wcel 1390  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-rex 2306
This theorem is referenced by:  rexbidv  2321  sbcrext  2829  sscoll2  9418
  Copyright terms: Public domain W3C validator