![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfnel | GIF version |
Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfnel.1 | ⊢ Ⅎ𝑥𝐴 |
nfnel.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfnel | ⊢ Ⅎ𝑥 𝐴 ∉ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 2207 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | nfnel.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfnel.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfel 2186 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
5 | 4 | nfn 1548 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 ∈ 𝐵 |
6 | 1, 5 | nfxfr 1363 | 1 ⊢ Ⅎ𝑥 𝐴 ∉ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 Ⅎwnf 1349 ∈ wcel 1393 Ⅎwnfc 2165 ∉ wnel 2205 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 df-nfc 2167 df-nel 2207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |