ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq2 Structured version   GIF version

Theorem neleq2 2296
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq2 (A = B → (𝐶A𝐶B))

Proof of Theorem neleq2
StepHypRef Expression
1 eleq2 2098 . . 3 (A = B → (𝐶 A𝐶 B))
21notbid 591 . 2 (A = B → (¬ 𝐶 A ↔ ¬ 𝐶 B))
3 df-nel 2204 . 2 (𝐶A ↔ ¬ 𝐶 A)
4 df-nel 2204 . 2 (𝐶B ↔ ¬ 𝐶 B)
52, 3, 43bitr4g 212 1 (A = B → (𝐶A𝐶B))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 98   = wceq 1242   wcel 1390  wnel 2202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030  df-clel 2033  df-nel 2204
This theorem is referenced by:  neleq12d  2297
  Copyright terms: Public domain W3C validator