![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr4g | GIF version |
Description: More general version of 3bitr4i 201. Useful for converting definitions in a formula. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3bitr4g.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr4g.2 | ⊢ (𝜃 ↔ 𝜓) |
3bitr4g.3 | ⊢ (𝜏 ↔ 𝜒) |
Ref | Expression |
---|---|
3bitr4g | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4g.2 | . . 3 ⊢ (𝜃 ↔ 𝜓) | |
2 | 3bitr4g.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5bb 181 | . 2 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
4 | 3bitr4g.3 | . 2 ⊢ (𝜏 ↔ 𝜒) | |
5 | 3, 4 | syl6bbr 187 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: bibi1d 222 pm5.32rd 424 orbi1d 705 dcbid 748 pm4.14dc 787 orbididc 860 3orbi123d 1206 3anbi123d 1207 xorbi2d 1271 xorbi1d 1272 nfbidf 1432 drnf1 1621 drnf2 1622 drsb1 1680 sbal2 1898 eubidh 1906 eubid 1907 mobidh 1934 mobid 1935 eqeq1 2046 eqeq2 2049 eleq1 2100 eleq2 2101 nfceqdf 2177 drnfc1 2194 drnfc2 2195 neeq1 2218 neeq2 2219 neleq1 2301 neleq2 2302 ralbida 2320 rexbida 2321 ralbidv2 2328 rexbidv2 2329 r19.21t 2394 r19.23t 2423 reubida 2491 rmobida 2496 raleqf 2501 rexeqf 2502 reueq1f 2503 rmoeq1f 2504 cbvraldva2 2537 cbvrexdva2 2538 dfsbcq 2766 sbcbid 2816 sbcabel 2839 sbnfc2 2906 psseq1 3031 psseq2 3032 ssconb 3076 uneq1 3090 ineq1 3131 difin2 3199 reuun2 3220 reldisj 3271 undif4 3284 disjssun 3285 sbcssg 3330 eltpg 3416 raltpg 3423 rextpg 3424 opeq1 3549 opeq2 3550 intmin4 3643 dfiun2g 3689 iindif2m 3724 iinin2m 3725 breq 3766 breq1 3767 breq2 3768 treq 3860 opthg2 3976 poeq1 4036 soeq1 4052 frforeq1 4080 freq1 4081 frforeq2 4082 freq2 4083 frforeq3 4084 weeq1 4093 weeq2 4094 ordeq 4109 limeq 4114 rabxfrd 4201 iunpw 4211 opthprc 4391 releq 4422 sbcrel 4426 eqrel 4429 eqrelrel 4441 xpiindim 4473 brcnvg 4516 brresg 4620 resieq 4622 xpcanm 4760 xpcan2m 4761 dmsnopg 4792 dfco2a 4821 cnvpom 4860 cnvsom 4861 iotaeq 4875 sniota 4894 sbcfung 4925 fneq1 4987 fneq2 4988 feq1 5030 feq2 5031 feq3 5032 sbcfng 5044 sbcfg 5045 f1eq1 5087 f1eq2 5088 f1eq3 5089 foeq1 5102 foeq2 5103 foeq3 5104 f1oeq1 5117 f1oeq2 5118 f1oeq3 5119 fun11iun 5147 mpteqb 5261 dffo3 5314 fmptco 5330 dff13 5407 f1imaeq 5414 f1imapss 5415 f1eqcocnv 5431 fliftcnv 5435 isoeq1 5441 isoeq2 5442 isoeq3 5443 isoeq4 5444 isoeq5 5445 isocnv2 5452 acexmid 5511 fnotovb 5548 mpt2eq123 5564 ottposg 5870 dmtpos 5871 smoeq 5905 nnacan 6085 nnmcan 6092 ereq1 6113 ereq2 6114 elecg 6144 ereldm 6149 enfi 6334 creur 7911 eqreznegel 8549 ltxr 8695 icoshftf1o 8859 elfzm11 8953 elfzomelpfzo 9087 nn0ennn 9209 nnesq 9368 cau4 9712 cbvrald 9927 bj-dcbi 10048 |
Copyright terms: Public domain | W3C validator |