ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq1 Structured version   GIF version

Theorem fneq1 4930
Description: Equality theorem for function predicate with domain. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
fneq1 (𝐹 = 𝐺 → (𝐹 Fn A𝐺 Fn A))

Proof of Theorem fneq1
StepHypRef Expression
1 funeq 4864 . . 3 (𝐹 = 𝐺 → (Fun 𝐹 ↔ Fun 𝐺))
2 dmeq 4478 . . . 4 (𝐹 = 𝐺 → dom 𝐹 = dom 𝐺)
32eqeq1d 2045 . . 3 (𝐹 = 𝐺 → (dom 𝐹 = A ↔ dom 𝐺 = A))
41, 3anbi12d 442 . 2 (𝐹 = 𝐺 → ((Fun 𝐹 dom 𝐹 = A) ↔ (Fun 𝐺 dom 𝐺 = A)))
5 df-fn 4848 . 2 (𝐹 Fn A ↔ (Fun 𝐹 dom 𝐹 = A))
6 df-fn 4848 . 2 (𝐺 Fn A ↔ (Fun 𝐺 dom 𝐺 = A))
74, 5, 63bitr4g 212 1 (𝐹 = 𝐺 → (𝐹 Fn A𝐺 Fn A))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242  dom cdm 4288  Fun wfun 4839   Fn wfn 4840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-fun 4847  df-fn 4848
This theorem is referenced by:  fneq1d  4932  fneq1i  4936  fn0  4961  feq1  4973  foeq1  5045  f1ocnv  5082  mpteqb  5204  eufnfv  5332  tfr0  5878  tfrlemiex  5886
  Copyright terms: Public domain W3C validator