ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftcnv GIF version

Theorem fliftcnv 5435
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftcnv (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2040 . . . . 5 ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)
2 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
3 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
41, 2, 3fliftrel 5432 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅))
5 relxp 4447 . . . 4 Rel (𝑆 × 𝑅)
6 relss 4427 . . . 4 (ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
74, 5, 6mpisyl 1335 . . 3 (𝜑 → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
8 relcnv 4703 . . 3 Rel 𝐹
97, 8jctil 295 . 2 (𝜑 → (Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
10 flift.1 . . . . . . 7 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1110, 3, 2fliftel 5433 . . . . . 6 (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵)))
12 vex 2560 . . . . . . 7 𝑦 ∈ V
13 vex 2560 . . . . . . 7 𝑧 ∈ V
1412, 13brcnv 4518 . . . . . 6 (𝑦𝐹𝑧𝑧𝐹𝑦)
15 ancom 253 . . . . . . 7 ((𝑦 = 𝐵𝑧 = 𝐴) ↔ (𝑧 = 𝐴𝑦 = 𝐵))
1615rexbii 2331 . . . . . 6 (∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴) ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵))
1711, 14, 163bitr4g 212 . . . . 5 (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
181, 2, 3fliftel 5433 . . . . 5 (𝜑 → (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
1917, 18bitr4d 180 . . . 4 (𝜑 → (𝑦𝐹𝑧𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧))
20 df-br 3765 . . . 4 (𝑦𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐹)
21 df-br 3765 . . . 4 (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
2219, 20, 213bitr3g 211 . . 3 (𝜑 → (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
2322eqrelrdv2 4439 . 2 (((Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
249, 23mpancom 399 1 (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wrex 2307  wss 2917  cop 3378   class class class wbr 3764  cmpt 3818   × cxp 4343  ccnv 4344  ran crn 4346  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator