ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiindim GIF version

Theorem xpiindim 4473
Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpiindim (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem xpiindim
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4447 . . . . . 6 Rel (𝐶 × 𝐵)
21rgenw 2376 . . . . 5 𝑥𝐴 Rel (𝐶 × 𝐵)
3 eleq1 2100 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43cbvexv 1795 . . . . . 6 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
5 r19.2m 3309 . . . . . 6 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
64, 5sylanbr 269 . . . . 5 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
72, 6mpan2 401 . . . 4 (∃𝑦 𝑦𝐴 → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
8 reliin 4459 . . . 4 (∃𝑥𝐴 Rel (𝐶 × 𝐵) → Rel 𝑥𝐴 (𝐶 × 𝐵))
97, 8syl 14 . . 3 (∃𝑦 𝑦𝐴 → Rel 𝑥𝐴 (𝐶 × 𝐵))
10 relxp 4447 . . 3 Rel (𝐶 × 𝑥𝐴 𝐵)
119, 10jctil 295 . 2 (∃𝑦 𝑦𝐴 → (Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)))
12 r19.28mv 3314 . . . . . . 7 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
134, 12sylbir 125 . . . . . 6 (∃𝑦 𝑦𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
1413bicomd 129 . . . . 5 (∃𝑦 𝑦𝐴 → ((𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵)))
15 vex 2560 . . . . . . 7 𝑧 ∈ V
16 eliin 3662 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1715, 16ax-mp 7 . . . . . 6 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
1817anbi2i 430 . . . . 5 ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵))
19 opelxp 4374 . . . . . 6 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ (𝑤𝐶𝑧𝐵))
2019ralbii 2330 . . . . 5 (∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵))
2114, 18, 203bitr4g 212 . . . 4 (∃𝑦 𝑦𝐴 → ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
22 opelxp 4374 . . . 4 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ (𝑤𝐶𝑧 𝑥𝐴 𝐵))
23 vex 2560 . . . . . 6 𝑤 ∈ V
2423, 15opex 3966 . . . . 5 𝑤, 𝑧⟩ ∈ V
25 eliin 3662 . . . . 5 (⟨𝑤, 𝑧⟩ ∈ V → (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
2624, 25ax-mp 7 . . . 4 (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵))
2721, 22, 263bitr4g 212 . . 3 (∃𝑦 𝑦𝐴 → (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵)))
2827eqrelrdv2 4439 . 2 (((Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)) ∧ ∃𝑦 𝑦𝐴) → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
2911, 28mpancom 399 1 (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  wral 2306  wrex 2307  Vcvv 2557  cop 3378   ciin 3658   × cxp 4343  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-iin 3660  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by:  xpriindim  4474
  Copyright terms: Public domain W3C validator