![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmtpos | GIF version |
Description: The domain of tpos 𝐹 when dom 𝐹 is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dmtpos | ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4372 | . . . . 5 ⊢ ¬ ∅ ∈ (V × V) | |
2 | ssel 2939 | . . . . 5 ⊢ (dom 𝐹 ⊆ (V × V) → (∅ ∈ dom 𝐹 → ∅ ∈ (V × V))) | |
3 | 1, 2 | mtoi 590 | . . . 4 ⊢ (dom 𝐹 ⊆ (V × V) → ¬ ∅ ∈ dom 𝐹) |
4 | df-rel 4352 | . . . 4 ⊢ (Rel dom 𝐹 ↔ dom 𝐹 ⊆ (V × V)) | |
5 | reldmtpos 5868 | . . . 4 ⊢ (Rel dom tpos 𝐹 ↔ ¬ ∅ ∈ dom 𝐹) | |
6 | 3, 4, 5 | 3imtr4i 190 | . . 3 ⊢ (Rel dom 𝐹 → Rel dom tpos 𝐹) |
7 | relcnv 4703 | . . 3 ⊢ Rel ◡dom 𝐹 | |
8 | 6, 7 | jctir 296 | . 2 ⊢ (Rel dom 𝐹 → (Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹)) |
9 | vex 2560 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
10 | vex 2560 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
11 | vex 2560 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
12 | brtposg 5869 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) | |
13 | 9, 10, 11, 12 | mp3an 1232 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧) |
14 | 13 | a1i 9 | . . . . 5 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ 〈𝑦, 𝑥〉𝐹𝑧)) |
15 | 14 | exbidv 1706 | . . . 4 ⊢ (Rel dom 𝐹 → (∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧)) |
16 | 9, 10 | opex 3966 | . . . . 5 ⊢ 〈𝑥, 𝑦〉 ∈ V |
17 | 16 | eldm 4532 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ ∃𝑧〈𝑥, 𝑦〉tpos 𝐹𝑧) |
18 | 9, 10 | opelcnv 4517 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ 〈𝑦, 𝑥〉 ∈ dom 𝐹) |
19 | 10, 9 | opex 3966 | . . . . . 6 ⊢ 〈𝑦, 𝑥〉 ∈ V |
20 | 19 | eldm 4532 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
21 | 18, 20 | bitri 173 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑥〉𝐹𝑧) |
22 | 15, 17, 21 | 3bitr4g 212 | . . 3 ⊢ (Rel dom 𝐹 → (〈𝑥, 𝑦〉 ∈ dom tpos 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ ◡dom 𝐹)) |
23 | 22 | eqrelrdv2 4439 | . 2 ⊢ (((Rel dom tpos 𝐹 ∧ Rel ◡dom 𝐹) ∧ Rel dom 𝐹) → dom tpos 𝐹 = ◡dom 𝐹) |
24 | 8, 23 | mpancom 399 | 1 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∃wex 1381 ∈ wcel 1393 Vcvv 2557 ⊆ wss 2917 ∅c0 3224 〈cop 3378 class class class wbr 3764 × cxp 4343 ◡ccnv 4344 dom cdm 4345 Rel wrel 4350 tpos ctpos 5859 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-fv 4910 df-tpos 5860 |
This theorem is referenced by: rntpos 5872 dftpos2 5876 dftpos3 5877 tposfn2 5881 |
Copyright terms: Public domain | W3C validator |