![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > releq | GIF version |
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
releq | ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 2966 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V))) | |
2 | df-rel 4352 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | df-rel 4352 | . 2 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
4 | 1, 2, 3 | 3bitr4g 212 | 1 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1243 Vcvv 2557 ⊆ wss 2917 × cxp 4343 Rel wrel 4350 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 df-rel 4352 |
This theorem is referenced by: releqi 4423 releqd 4424 dfrel2 4771 tposfn2 5881 ereq1 6113 |
Copyright terms: Public domain | W3C validator |