Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteqb Structured version   GIF version

Theorem mpteqb 5204
 Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5208. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb (x A B 𝑉 → ((x AB) = (x A𝐶) ↔ x A B = 𝐶))
Distinct variable group:   x,A
Allowed substitution hints:   B(x)   𝐶(x)   𝑉(x)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2560 . . 3 (B 𝑉B V)
21ralimi 2378 . 2 (x A B 𝑉x A B V)
3 fneq1 4930 . . . . . . 7 ((x AB) = (x A𝐶) → ((x AB) Fn A ↔ (x A𝐶) Fn A))
4 eqid 2037 . . . . . . . 8 (x AB) = (x AB)
54mptfng 4967 . . . . . . 7 (x A B V ↔ (x AB) Fn A)
6 eqid 2037 . . . . . . . 8 (x A𝐶) = (x A𝐶)
76mptfng 4967 . . . . . . 7 (x A 𝐶 V ↔ (x A𝐶) Fn A)
83, 5, 73bitr4g 212 . . . . . 6 ((x AB) = (x A𝐶) → (x A B V ↔ x A 𝐶 V))
98biimpd 132 . . . . 5 ((x AB) = (x A𝐶) → (x A B V → x A 𝐶 V))
10 r19.26 2435 . . . . . . 7 (x A (B V 𝐶 V) ↔ (x A B V x A 𝐶 V))
11 nfmpt1 3841 . . . . . . . . . 10 x(x AB)
12 nfmpt1 3841 . . . . . . . . . 10 x(x A𝐶)
1311, 12nfeq 2182 . . . . . . . . 9 x(x AB) = (x A𝐶)
14 simpll 481 . . . . . . . . . . . 12 ((((x AB) = (x A𝐶) x A) (B V 𝐶 V)) → (x AB) = (x A𝐶))
1514fveq1d 5123 . . . . . . . . . . 11 ((((x AB) = (x A𝐶) x A) (B V 𝐶 V)) → ((x AB)‘x) = ((x A𝐶)‘x))
164fvmpt2 5197 . . . . . . . . . . . 12 ((x A B V) → ((x AB)‘x) = B)
1716ad2ant2lr 479 . . . . . . . . . . 11 ((((x AB) = (x A𝐶) x A) (B V 𝐶 V)) → ((x AB)‘x) = B)
186fvmpt2 5197 . . . . . . . . . . . 12 ((x A 𝐶 V) → ((x A𝐶)‘x) = 𝐶)
1918ad2ant2l 477 . . . . . . . . . . 11 ((((x AB) = (x A𝐶) x A) (B V 𝐶 V)) → ((x A𝐶)‘x) = 𝐶)
2015, 17, 193eqtr3d 2077 . . . . . . . . . 10 ((((x AB) = (x A𝐶) x A) (B V 𝐶 V)) → B = 𝐶)
2120exp31 346 . . . . . . . . 9 ((x AB) = (x A𝐶) → (x A → ((B V 𝐶 V) → B = 𝐶)))
2213, 21ralrimi 2384 . . . . . . . 8 ((x AB) = (x A𝐶) → x A ((B V 𝐶 V) → B = 𝐶))
23 ralim 2374 . . . . . . . 8 (x A ((B V 𝐶 V) → B = 𝐶) → (x A (B V 𝐶 V) → x A B = 𝐶))
2422, 23syl 14 . . . . . . 7 ((x AB) = (x A𝐶) → (x A (B V 𝐶 V) → x A B = 𝐶))
2510, 24syl5bir 142 . . . . . 6 ((x AB) = (x A𝐶) → ((x A B V x A 𝐶 V) → x A B = 𝐶))
2625expd 245 . . . . 5 ((x AB) = (x A𝐶) → (x A B V → (x A 𝐶 V → x A B = 𝐶)))
279, 26mpdd 36 . . . 4 ((x AB) = (x A𝐶) → (x A B V → x A B = 𝐶))
2827com12 27 . . 3 (x A B V → ((x AB) = (x A𝐶) → x A B = 𝐶))
29 eqid 2037 . . . 4 A = A
30 mpteq12 3831 . . . 4 ((A = A x A B = 𝐶) → (x AB) = (x A𝐶))
3129, 30mpan 400 . . 3 (x A B = 𝐶 → (x AB) = (x A𝐶))
3228, 31impbid1 130 . 2 (x A B V → ((x AB) = (x A𝐶) ↔ x A B = 𝐶))
332, 32syl 14 1 (x A B 𝑉 → ((x AB) = (x A𝐶) ↔ x A B = 𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1242   ∈ wcel 1390  ∀wral 2300  Vcvv 2551   ↦ cmpt 3809   Fn wfn 4840  ‘cfv 4845 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853 This theorem is referenced by:  eqfnfv  5208  eufnfv  5332  offveqb  5672
 Copyright terms: Public domain W3C validator