![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi1d | GIF version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
orbi1d | ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | orbi2d 704 | . 2 ⊢ (𝜑 → ((𝜃 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒))) |
3 | orcom 647 | . 2 ⊢ ((𝜓 ∨ 𝜃) ↔ (𝜃 ∨ 𝜓)) | |
4 | orcom 647 | . 2 ⊢ ((𝜒 ∨ 𝜃) ↔ (𝜃 ∨ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4g 212 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜒 ∨ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∨ wo 629 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: orbi1 706 orbi12d 707 xorbi1d 1272 eueq2dc 2714 uneq1 3090 r19.45mv 3315 rexprg 3422 rextpg 3424 swopolem 4042 sowlin 4057 onsucelsucexmidlem1 4253 onsucelsucexmid 4255 ordsoexmid 4286 isosolem 5463 acexmidlema 5503 acexmidlemb 5504 acexmidlem2 5509 acexmidlemv 5510 freceq1 5979 elinp 6572 prloc 6589 ltsosr 6849 axpre-ltwlin 6957 apreap 7578 apreim 7594 nn01to3 8552 ltxr 8695 fzpr 8939 elfzp12 8961 |
Copyright terms: Public domain | W3C validator |