Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  frforeq2 GIF version

Theorem frforeq2 4082
 Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
Assertion
Ref Expression
frforeq2 (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇))

Proof of Theorem frforeq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2505 . . . . 5 (𝐴 = 𝐵 → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) ↔ ∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇)))
21imbi1d 220 . . . 4 (𝐴 = 𝐵 → ((∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) ↔ (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇)))
32raleqbi1dv 2513 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) ↔ ∀𝑥𝐵 (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇)))
4 sseq1 2966 . . 3 (𝐴 = 𝐵 → (𝐴𝑇𝐵𝑇))
53, 4imbi12d 223 . 2 (𝐴 = 𝐵 → ((∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐴𝑇) ↔ (∀𝑥𝐵 (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐵𝑇)))
6 df-frfor 4068 . 2 ( FrFor 𝑅𝐴𝑇 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐴𝑇))
7 df-frfor 4068 . 2 ( FrFor 𝑅𝐵𝑇 ↔ (∀𝑥𝐵 (∀𝑦𝐵 (𝑦𝑅𝑥𝑦𝑇) → 𝑥𝑇) → 𝐵𝑇))
85, 6, 73bitr4g 212 1 (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑇 ↔ FrFor 𝑅𝐵𝑇))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   = wceq 1243   ∈ wcel 1393  ∀wral 2306   ⊆ wss 2917   class class class wbr 3764   FrFor wfrfor 4064 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-in 2924  df-ss 2931  df-frfor 4068 This theorem is referenced by:  freq2  4083
 Copyright terms: Public domain W3C validator