ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frforeq2 Unicode version

Theorem frforeq2 4082
Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.)
Assertion
Ref Expression
frforeq2  |-  ( A  =  B  ->  (FrFor  R A T  <-> FrFor  R B T ) )

Proof of Theorem frforeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2505 . . . . 5  |-  ( A  =  B  ->  ( A. y  e.  A  ( y R x  ->  y  e.  T
)  <->  A. y  e.  B  ( y R x  ->  y  e.  T
) ) )
21imbi1d 220 . . . 4  |-  ( A  =  B  ->  (
( A. y  e.  A  ( y R x  ->  y  e.  T )  ->  x  e.  T )  <->  ( A. y  e.  B  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
32raleqbi1dv 2513 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  T
)  ->  x  e.  T )  <->  A. x  e.  B  ( A. y  e.  B  (
y R x  -> 
y  e.  T )  ->  x  e.  T
) ) )
4 sseq1 2966 . . 3  |-  ( A  =  B  ->  ( A  C_  T  <->  B  C_  T
) )
53, 4imbi12d 223 . 2  |-  ( A  =  B  ->  (
( A. x  e.  A  ( A. y  e.  A  ( y R x  ->  y  e.  T )  ->  x  e.  T )  ->  A  C_  T )  <->  ( A. x  e.  B  ( A. y  e.  B  ( y R x  ->  y  e.  T
)  ->  x  e.  T )  ->  B  C_  T ) ) )
6 df-frfor 4068 . 2  |-  (FrFor  R A T  <->  ( A. x  e.  A  ( A. y  e.  A  (
y R x  -> 
y  e.  T )  ->  x  e.  T
)  ->  A  C_  T
) )
7 df-frfor 4068 . 2  |-  (FrFor  R B T  <->  ( A. x  e.  B  ( A. y  e.  B  (
y R x  -> 
y  e.  T )  ->  x  e.  T
)  ->  B  C_  T
) )
85, 6, 73bitr4g 212 1  |-  ( A  =  B  ->  (FrFor  R A T  <-> FrFor  R B T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306    C_ wss 2917   class class class wbr 3764  FrFor wfrfor 4064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-in 2924  df-ss 2931  df-frfor 4068
This theorem is referenced by:  freq2  4083
  Copyright terms: Public domain W3C validator