ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brresg Structured version   GIF version

Theorem brresg 4536
Description: Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
Assertion
Ref Expression
brresg (B 𝑉 → (A(𝐶𝐷)B ↔ (A𝐶B A 𝐷)))

Proof of Theorem brresg
StepHypRef Expression
1 opelresg 4535 . 2 (B 𝑉 → (⟨A, B (𝐶𝐷) ↔ (⟨A, B 𝐶 A 𝐷)))
2 df-br 3729 . 2 (A(𝐶𝐷)B ↔ ⟨A, B (𝐶𝐷))
3 df-br 3729 . . 3 (A𝐶B ↔ ⟨A, B 𝐶)
43anbi1i 431 . 2 ((A𝐶B A 𝐷) ↔ (⟨A, B 𝐶 A 𝐷))
51, 2, 43bitr4g 212 1 (B 𝑉 → (A(𝐶𝐷)B ↔ (A𝐶B A 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   wcel 1367  cop 3343   class class class wbr 3728  cres 4263
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 614  ax-5 1310  ax-7 1311  ax-gen 1312  ax-ie1 1356  ax-ie2 1357  ax-8 1369  ax-10 1370  ax-11 1371  ax-i12 1372  ax-bnd 1373  ax-4 1374  ax-14 1379  ax-17 1393  ax-i9 1397  ax-ial 1401  ax-i5r 1402  ax-ext 1996  ax-sep 3839  ax-pow 3891  ax-pr 3908
This theorem depends on definitions:  df-bi 110  df-3an 869  df-tru 1227  df-nf 1324  df-sb 1620  df-clab 2001  df-cleq 2007  df-clel 2010  df-nfc 2141  df-ral 2281  df-rex 2282  df-v 2529  df-un 2891  df-in 2893  df-ss 2900  df-pw 3326  df-sn 3346  df-pr 3347  df-op 3349  df-br 3729  df-opab 3783  df-xp 4267  df-res 4273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator