![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resieq | GIF version |
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
resieq | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3768 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵( I ↾ 𝐴)𝐶)) | |
2 | eqeq2 2049 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | bibi12d 224 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
4 | 3 | imbi2d 219 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)))) |
5 | vex 2560 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | opres 4621 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 〈𝐵, 𝑥〉 ∈ I )) |
7 | df-br 3765 | . . . 4 ⊢ (𝐵( I ↾ 𝐴)𝑥 ↔ 〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴)) | |
8 | 5 | ideq 4488 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 𝐵 = 𝑥) |
9 | df-br 3765 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) | |
10 | 8, 9 | bitr3i 175 | . . . 4 ⊢ (𝐵 = 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) |
11 | 6, 7, 10 | 3bitr4g 212 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) |
12 | 4, 11 | vtoclg 2613 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
13 | 12 | impcom 116 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 = wceq 1243 ∈ wcel 1393 〈cop 3378 class class class wbr 3764 I cid 4025 ↾ cres 4347 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-res 4357 |
This theorem is referenced by: foeqcnvco 5430 f1eqcocnv 5431 |
Copyright terms: Public domain | W3C validator |