Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.14dc | GIF version |
Description: Theorem *4.14 of [WhiteheadRussell] p. 117, given a decidability condition. (Contributed by Jim Kingdon, 24-Apr-2018.) |
Ref | Expression |
---|---|
pm4.14dc | ⊢ (DECID 𝜒 → (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34bdc 765 | . . 3 ⊢ (DECID 𝜒 → ((𝜓 → 𝜒) ↔ (¬ 𝜒 → ¬ 𝜓))) | |
2 | 1 | imbi2d 219 | . 2 ⊢ (DECID 𝜒 → ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓)))) |
3 | impexp 250 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | |
4 | impexp 250 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | |
5 | 2, 3, 4 | 3bitr4g 212 | 1 ⊢ (DECID 𝜒 → (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 DECID wdc 742 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 |
This theorem is referenced by: pm3.37dc 788 |
Copyright terms: Public domain | W3C validator |