ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq1 Structured version   GIF version

Theorem f1oeq1 5060
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq1 (𝐹 = 𝐺 → (𝐹:A1-1-ontoB𝐺:A1-1-ontoB))

Proof of Theorem f1oeq1
StepHypRef Expression
1 f1eq1 5030 . . 3 (𝐹 = 𝐺 → (𝐹:A1-1B𝐺:A1-1B))
2 foeq1 5045 . . 3 (𝐹 = 𝐺 → (𝐹:AontoB𝐺:AontoB))
31, 2anbi12d 442 . 2 (𝐹 = 𝐺 → ((𝐹:A1-1B 𝐹:AontoB) ↔ (𝐺:A1-1B 𝐺:AontoB)))
4 df-f1o 4852 . 2 (𝐹:A1-1-ontoB ↔ (𝐹:A1-1B 𝐹:AontoB))
5 df-f1o 4852 . 2 (𝐺:A1-1-ontoB ↔ (𝐺:A1-1B 𝐺:AontoB))
63, 4, 53bitr4g 212 1 (𝐹 = 𝐺 → (𝐹:A1-1-ontoB𝐺:A1-1-ontoB))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242  1-1wf1 4842  ontowfo 4843  1-1-ontowf1o 4844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852
This theorem is referenced by:  f1oeq123d  5066  f1ocnvb  5083  f1orescnv  5085  f1ovi  5108  f1osng  5110  f1oresrab  5272  fsn  5278  isoeq1  5384  f1oen3g  6170  ensn1  6212  xpcomf1o  6235
  Copyright terms: Public domain W3C validator