![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnotovb | GIF version |
Description: Equivalence of operation value and ordered triple membership, analogous to fnopfvb 5158. (Contributed by NM, 17-Dec-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fnotovb | ⊢ ((𝐹 Fn (A × B) ∧ 𝐶 ∈ A ∧ 𝐷 ∈ B) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4319 | . . . 4 ⊢ ((𝐶 ∈ A ∧ 𝐷 ∈ B) → 〈𝐶, 𝐷〉 ∈ (A × B)) | |
2 | fnopfvb 5158 | . . . 4 ⊢ ((𝐹 Fn (A × B) ∧ 〈𝐶, 𝐷〉 ∈ (A × B)) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) | |
3 | 1, 2 | sylan2 270 | . . 3 ⊢ ((𝐹 Fn (A × B) ∧ (𝐶 ∈ A ∧ 𝐷 ∈ B)) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
4 | 3 | 3impb 1099 | . 2 ⊢ ((𝐹 Fn (A × B) ∧ 𝐶 ∈ A ∧ 𝐷 ∈ B) → ((𝐹‘〈𝐶, 𝐷〉) = 𝑅 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹)) |
5 | df-ov 5458 | . . 3 ⊢ (𝐶𝐹𝐷) = (𝐹‘〈𝐶, 𝐷〉) | |
6 | 5 | eqeq1i 2044 | . 2 ⊢ ((𝐶𝐹𝐷) = 𝑅 ↔ (𝐹‘〈𝐶, 𝐷〉) = 𝑅) |
7 | df-ot 3377 | . . 3 ⊢ 〈𝐶, 𝐷, 𝑅〉 = 〈〈𝐶, 𝐷〉, 𝑅〉 | |
8 | 7 | eleq1i 2100 | . 2 ⊢ (〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹 ↔ 〈〈𝐶, 𝐷〉, 𝑅〉 ∈ 𝐹) |
9 | 4, 6, 8 | 3bitr4g 212 | 1 ⊢ ((𝐹 Fn (A × B) ∧ 𝐶 ∈ A ∧ 𝐷 ∈ B) → ((𝐶𝐹𝐷) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∧ w3a 884 = wceq 1242 ∈ wcel 1390 〈cop 3370 〈cotp 3371 × cxp 4286 Fn wfn 4840 ‘cfv 4845 (class class class)co 5455 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-sbc 2759 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-ot 3377 df-uni 3572 df-br 3756 df-opab 3810 df-id 4021 df-xp 4294 df-rel 4295 df-cnv 4296 df-co 4297 df-dm 4298 df-iota 4810 df-fun 4847 df-fn 4848 df-fv 4853 df-ov 5458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |