Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcabel GIF version

Theorem sbcabel 2839
 Description: Interchange class substitution and class abstraction. (Contributed by NM, 5-Nov-2005.)
Hypothesis
Ref Expression
sbcabel.1 𝑥𝐵
Assertion
Ref Expression
sbcabel (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem sbcabel
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elex 2566 . 2 (𝐴𝑉𝐴 ∈ V)
2 sbcexg 2813 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤(𝑤 = {𝑦𝜑} ∧ 𝑤𝐵) ↔ ∃𝑤[𝐴 / 𝑥](𝑤 = {𝑦𝜑} ∧ 𝑤𝐵)))
3 sbcang 2806 . . . . . 6 (𝐴 ∈ V → ([𝐴 / 𝑥](𝑤 = {𝑦𝜑} ∧ 𝑤𝐵) ↔ ([𝐴 / 𝑥]𝑤 = {𝑦𝜑} ∧ [𝐴 / 𝑥]𝑤𝐵)))
4 sbcalg 2811 . . . . . . . . 9 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦(𝑦𝑤𝜑) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝑤𝜑)))
5 sbcbig 2809 . . . . . . . . . . 11 (𝐴 ∈ V → ([𝐴 / 𝑥](𝑦𝑤𝜑) ↔ ([𝐴 / 𝑥]𝑦𝑤[𝐴 / 𝑥]𝜑)))
6 sbcg 2827 . . . . . . . . . . . 12 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝑤𝑦𝑤))
76bibi1d 222 . . . . . . . . . . 11 (𝐴 ∈ V → (([𝐴 / 𝑥]𝑦𝑤[𝐴 / 𝑥]𝜑) ↔ (𝑦𝑤[𝐴 / 𝑥]𝜑)))
85, 7bitrd 177 . . . . . . . . . 10 (𝐴 ∈ V → ([𝐴 / 𝑥](𝑦𝑤𝜑) ↔ (𝑦𝑤[𝐴 / 𝑥]𝜑)))
98albidv 1705 . . . . . . . . 9 (𝐴 ∈ V → (∀𝑦[𝐴 / 𝑥](𝑦𝑤𝜑) ↔ ∀𝑦(𝑦𝑤[𝐴 / 𝑥]𝜑)))
104, 9bitrd 177 . . . . . . . 8 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦(𝑦𝑤𝜑) ↔ ∀𝑦(𝑦𝑤[𝐴 / 𝑥]𝜑)))
11 abeq2 2146 . . . . . . . . 9 (𝑤 = {𝑦𝜑} ↔ ∀𝑦(𝑦𝑤𝜑))
1211sbcbii 2818 . . . . . . . 8 ([𝐴 / 𝑥]𝑤 = {𝑦𝜑} ↔ [𝐴 / 𝑥]𝑦(𝑦𝑤𝜑))
13 abeq2 2146 . . . . . . . 8 (𝑤 = {𝑦[𝐴 / 𝑥]𝜑} ↔ ∀𝑦(𝑦𝑤[𝐴 / 𝑥]𝜑))
1410, 12, 133bitr4g 212 . . . . . . 7 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤 = {𝑦𝜑} ↔ 𝑤 = {𝑦[𝐴 / 𝑥]𝜑}))
15 sbcabel.1 . . . . . . . . 9 𝑥𝐵
1615nfcri 2172 . . . . . . . 8 𝑥 𝑤𝐵
1716sbcgf 2825 . . . . . . 7 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤𝐵𝑤𝐵))
1814, 17anbi12d 442 . . . . . 6 (𝐴 ∈ V → (([𝐴 / 𝑥]𝑤 = {𝑦𝜑} ∧ [𝐴 / 𝑥]𝑤𝐵) ↔ (𝑤 = {𝑦[𝐴 / 𝑥]𝜑} ∧ 𝑤𝐵)))
193, 18bitrd 177 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥](𝑤 = {𝑦𝜑} ∧ 𝑤𝐵) ↔ (𝑤 = {𝑦[𝐴 / 𝑥]𝜑} ∧ 𝑤𝐵)))
2019exbidv 1706 . . . 4 (𝐴 ∈ V → (∃𝑤[𝐴 / 𝑥](𝑤 = {𝑦𝜑} ∧ 𝑤𝐵) ↔ ∃𝑤(𝑤 = {𝑦[𝐴 / 𝑥]𝜑} ∧ 𝑤𝐵)))
212, 20bitrd 177 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑤(𝑤 = {𝑦𝜑} ∧ 𝑤𝐵) ↔ ∃𝑤(𝑤 = {𝑦[𝐴 / 𝑥]𝜑} ∧ 𝑤𝐵)))
22 df-clel 2036 . . . 4 ({𝑦𝜑} ∈ 𝐵 ↔ ∃𝑤(𝑤 = {𝑦𝜑} ∧ 𝑤𝐵))
2322sbcbii 2818 . . 3 ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵[𝐴 / 𝑥]𝑤(𝑤 = {𝑦𝜑} ∧ 𝑤𝐵))
24 df-clel 2036 . . 3 ({𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵 ↔ ∃𝑤(𝑤 = {𝑦[𝐴 / 𝑥]𝜑} ∧ 𝑤𝐵))
2521, 23, 243bitr4g 212 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
261, 25syl 14 1 (𝐴𝑉 → ([𝐴 / 𝑥]{𝑦𝜑} ∈ 𝐵 ↔ {𝑦[𝐴 / 𝑥]𝜑} ∈ 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98  ∀wal 1241   = wceq 1243  ∃wex 1381   ∈ wcel 1393  {cab 2026  Ⅎwnfc 2165  Vcvv 2557  [wsbc 2764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765 This theorem is referenced by:  csbexga  3885
 Copyright terms: Public domain W3C validator