Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfceqdf Structured version   GIF version

Theorem nfceqdf 2174
 Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1 xφ
nfceqdf.2 (φA = B)
Assertion
Ref Expression
nfceqdf (φ → (xAxB))

Proof of Theorem nfceqdf
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4 xφ
2 nfceqdf.2 . . . . 5 (φA = B)
32eleq2d 2104 . . . 4 (φ → (y Ay B))
41, 3nfbidf 1429 . . 3 (φ → (Ⅎx y A ↔ Ⅎx y B))
54albidv 1702 . 2 (φ → (yx y Ayx y B))
6 df-nfc 2164 . 2 (xAyx y A)
7 df-nfc 2164 . 2 (xByx y B)
85, 6, 73bitr4g 212 1 (φ → (xAxB))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1240   = wceq 1242  Ⅎwnf 1346   ∈ wcel 1390  Ⅎwnfc 2162 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-cleq 2030  df-clel 2033  df-nfc 2164 This theorem is referenced by:  nfopd  3557  dfnfc2  3589  nfimad  4620  nffvd  5130
 Copyright terms: Public domain W3C validator