ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ottposg Structured version   GIF version

Theorem ottposg 5811
Description: The transposition swaps the first two elements in a collection of ordered triples. (Contributed by Mario Carneiro, 1-Dec-2014.)
Assertion
Ref Expression
ottposg ((A 𝑉 B 𝑊 𝐶 𝑋) → (⟨A, B, 𝐶 tpos 𝐹 ↔ ⟨B, A, 𝐶 𝐹))

Proof of Theorem ottposg
StepHypRef Expression
1 brtposg 5810 . . 3 ((A 𝑉 B 𝑊 𝐶 𝑋) → (⟨A, B⟩tpos 𝐹𝐶 ↔ ⟨B, A𝐹𝐶))
2 df-br 3756 . . 3 (⟨A, B⟩tpos 𝐹𝐶 ↔ ⟨⟨A, B⟩, 𝐶 tpos 𝐹)
3 df-br 3756 . . 3 (⟨B, A𝐹𝐶 ↔ ⟨⟨B, A⟩, 𝐶 𝐹)
41, 2, 33bitr3g 211 . 2 ((A 𝑉 B 𝑊 𝐶 𝑋) → (⟨⟨A, B⟩, 𝐶 tpos 𝐹 ↔ ⟨⟨B, A⟩, 𝐶 𝐹))
5 df-ot 3377 . . 3 A, B, 𝐶⟩ = ⟨⟨A, B⟩, 𝐶
65eleq1i 2100 . 2 (⟨A, B, 𝐶 tpos 𝐹 ↔ ⟨⟨A, B⟩, 𝐶 tpos 𝐹)
7 df-ot 3377 . . 3 B, A, 𝐶⟩ = ⟨⟨B, A⟩, 𝐶
87eleq1i 2100 . 2 (⟨B, A, 𝐶 𝐹 ↔ ⟨⟨B, A⟩, 𝐶 𝐹)
94, 6, 83bitr4g 212 1 ((A 𝑉 B 𝑊 𝐶 𝑋) → (⟨A, B, 𝐶 tpos 𝐹 ↔ ⟨B, A, 𝐶 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   w3a 884   wcel 1390  cop 3370  cotp 3371   class class class wbr 3755  tpos ctpos 5800
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-ot 3377  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853  df-tpos 5801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator