![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notbid | GIF version |
Description: Deduction negating both sides of a logical equivalence. (Contributed by NM, 21-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
notbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
notbid | ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | biimprd 147 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) |
3 | 2 | con3d 561 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) |
4 | 1 | biimpd 132 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
5 | 4 | con3d 561 | . 2 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
6 | 3, 5 | impbid 120 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: notbii 594 dcbid 748 con1biidc 771 pm4.54dc 805 xorbi2d 1271 xorbi1d 1272 pm5.18im 1276 pm5.24dc 1289 neeq1 2218 neeq2 2219 necon3abid 2244 neleq1 2301 neleq2 2302 cdeqnot 2752 ru 2763 sbcng 2803 sbcnel12g 2867 sbcne12g 2868 difjust 2919 eldif 2927 dfpss3 3030 difeq2 3056 disjne 3273 ifbi 3348 prel12 3542 nalset 3887 pwnss 3912 poeq1 4036 pocl 4040 swopo 4043 sotritrieq 4062 tz7.2 4091 regexmidlem1 4258 regexmid 4260 nordeq 4268 nlimsucg 4290 nndceq0 4339 nnregexmid 4342 poinxp 4409 posng 4412 intirr 4711 poirr2 4717 cnvpom 4860 fndmdif 5272 f1imapss 5415 isopolem 5461 poxp 5853 nnmword 6091 brdifun 6133 swoer 6134 2dom 6285 php5 6321 php5dom 6325 findcard2s 6347 pitric 6419 addnidpig 6434 ltsonq 6496 elinp 6572 prltlu 6585 prdisj 6590 ltexprlemdisj 6704 ltposr 6848 aptisr 6863 axpre-ltirr 6956 axpre-apti 6959 xrlenlt 7084 axapti 7090 lttri3 7098 ltne 7103 leadd1 7425 reapti 7570 lemul1 7584 apirr 7596 apti 7613 lediv1 7835 lemuldiv 7847 lerec 7850 le2msq 7867 avgle1 8165 avgle2 8166 znnnlt1 8293 eluzdc 8547 qapne 8574 xrltne 8729 xleneg 8750 nn0disj 8995 elfzonelfzo 9086 fvinim0ffz 9096 flqlt 9125 expeq0 9286 abs00 9662 algcvgblem 9888 bj-nalset 10015 bj-nnelirr 10078 |
Copyright terms: Public domain | W3C validator |