Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrltne | GIF version |
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
xrltne | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltnr 8701 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | |
2 | breq2 3768 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐴 < 𝐵 ↔ 𝐴 < 𝐴)) | |
3 | 2 | notbid 592 | . . . . 5 ⊢ (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴)) |
4 | 1, 3 | syl5ibrcom 146 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵)) |
5 | 4 | necon2ad 2262 | . . 3 ⊢ (𝐴 ∈ ℝ* → (𝐴 < 𝐵 → 𝐵 ≠ 𝐴)) |
6 | 5 | imp 115 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
7 | 6 | 3adant2 923 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 885 = wceq 1243 ∈ wcel 1393 ≠ wne 2204 class class class wbr 3764 ℝ*cxr 7059 < clt 7060 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-pre-ltirr 6996 |
This theorem depends on definitions: df-bi 110 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |