ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltne GIF version

Theorem xrltne 8729
Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
Assertion
Ref Expression
xrltne ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)

Proof of Theorem xrltne
StepHypRef Expression
1 xrltnr 8701 . . . . 5 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
2 breq2 3768 . . . . . 6 (𝐵 = 𝐴 → (𝐴 < 𝐵𝐴 < 𝐴))
32notbid 592 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐴 < 𝐵 ↔ ¬ 𝐴 < 𝐴))
41, 3syl5ibrcom 146 . . . 4 (𝐴 ∈ ℝ* → (𝐵 = 𝐴 → ¬ 𝐴 < 𝐵))
54necon2ad 2262 . . 3 (𝐴 ∈ ℝ* → (𝐴 < 𝐵𝐵𝐴))
65imp 115 . 2 ((𝐴 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
763adant2 923 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  w3a 885   = wceq 1243  wcel 1393  wne 2204   class class class wbr 3764  *cxr 7059   < clt 7060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator