ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemdisj GIF version

Theorem ltexprlemdisj 6704
Description: Our constructed difference is disjoint. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemdisj (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐴   𝑥,𝐵,𝑦,𝑞   𝑥,𝐶,𝑦,𝑞

Proof of Theorem ltexprlemdisj
Dummy variables 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltsonq 6496 . . . . . 6 <Q Or Q
2 ltrelnq 6463 . . . . . 6 <Q ⊆ (Q × Q)
31, 2son2lpi 4721 . . . . 5 ¬ (𝑦 <Q 𝑧𝑧 <Q 𝑦)
4 ltrelpr 6603 . . . . . . . . . . . . . . . 16 <P ⊆ (P × P)
54brel 4392 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵 → (𝐴P𝐵P))
65simprd 107 . . . . . . . . . . . . . 14 (𝐴<P 𝐵𝐵P)
7 prop 6573 . . . . . . . . . . . . . 14 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
86, 7syl 14 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prltlu 6585 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
108, 9syl3an1 1168 . . . . . . . . . . . 12 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
11103expb 1105 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1211adantlr 446 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 +Q 𝑞) ∈ (1st𝐵) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1312adantrll 453 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
1413adantrrl 455 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞))
15 ltanqg 6498 . . . . . . . . . 10 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
1615adantl 262 . . . . . . . . 9 ((((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
175simpld 105 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐴P)
18 prop 6573 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
1917, 18syl 14 . . . . . . . . . . . 12 (𝐴<P 𝐵 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
20 elprnqu 6580 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2119, 20sylan 267 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2221ad2ant2r 478 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) → 𝑦Q)
2322adantrr 448 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑦Q)
24 elprnql 6579 . . . . . . . . . . . 12 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
2519, 24sylan 267 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴)) → 𝑧Q)
2625ad2ant2r 478 . . . . . . . . . 10 (((𝐴<P 𝐵𝑞Q) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → 𝑧Q)
2726adantrl 447 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑧Q)
28 simplr 482 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑞Q)
29 addcomnqg 6479 . . . . . . . . . 10 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 262 . . . . . . . . 9 ((((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3116, 23, 27, 28, 30caovord2d 5670 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 <Q 𝑧 ↔ (𝑦 +Q 𝑞) <Q (𝑧 +Q 𝑞)))
3214, 31mpbird 156 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑦 <Q 𝑧)
33 prltlu 6585 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑧 <Q 𝑦)
3419, 33syl3an1 1168 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑧 ∈ (1st𝐴) ∧ 𝑦 ∈ (2nd𝐴)) → 𝑧 <Q 𝑦)
35343com23 1110 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴)) → 𝑧 <Q 𝑦)
36353expb 1105 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3736adantlr 446 . . . . . . . . 9 (((𝐴<P 𝐵𝑞Q) ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3837adantrlr 454 . . . . . . . 8 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ 𝑧 ∈ (1st𝐴))) → 𝑧 <Q 𝑦)
3938adantrrr 456 . . . . . . 7 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → 𝑧 <Q 𝑦)
4032, 39jca 290 . . . . . 6 (((𝐴<P 𝐵𝑞Q) ∧ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))) → (𝑦 <Q 𝑧𝑧 <Q 𝑦))
4140ex 108 . . . . 5 ((𝐴<P 𝐵𝑞Q) → (((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) → (𝑦 <Q 𝑧𝑧 <Q 𝑦)))
423, 41mtoi 590 . . . 4 ((𝐴<P 𝐵𝑞Q) → ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
4342alrimivv 1755 . . 3 ((𝐴<P 𝐵𝑞Q) → ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
44 ltexprlem.1 . . . . . . . . . . . 12 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
4544ltexprlemell 6696 . . . . . . . . . . 11 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4644ltexprlemelu 6697 . . . . . . . . . . 11 (𝑞 ∈ (2nd𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))))
4745, 46anbi12i 433 . . . . . . . . . 10 ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
48 anandi 524 . . . . . . . . . 10 ((𝑞Q ∧ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))) ↔ ((𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
4947, 48bitr4i 176 . . . . . . . . 9 ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (𝑞Q ∧ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
5049baib 828 . . . . . . . 8 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)))))
51 eleq1 2100 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 ∈ (1st𝐴) ↔ 𝑧 ∈ (1st𝐴)))
52 oveq1 5519 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦 +Q 𝑞) = (𝑧 +Q 𝑞))
5352eleq1d 2106 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑦 +Q 𝑞) ∈ (2nd𝐵) ↔ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))
5451, 53anbi12d 442 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) ↔ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5554cbvexv 1795 . . . . . . . . 9 (∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵)) ↔ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))
5655anbi2i 430 . . . . . . . 8 ((∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑞) ∈ (2nd𝐵))) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5750, 56syl6bb 185 . . . . . . 7 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
58 eeanv 1807 . . . . . . 7 (∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ ∃𝑧(𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
5957, 58syl6bbr 187 . . . . . 6 (𝑞Q → ((𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6059notbid 592 . . . . 5 (𝑞Q → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
61 alnex 1388 . . . . . . 7 (∀𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6261albii 1359 . . . . . 6 (∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ∀𝑦 ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
63 alnex 1388 . . . . . 6 (∀𝑦 ¬ ∃𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6462, 63bitri 173 . . . . 5 (∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))) ↔ ¬ ∃𝑦𝑧((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵))))
6560, 64syl6bbr 187 . . . 4 (𝑞Q → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6665adantl 262 . . 3 ((𝐴<P 𝐵𝑞Q) → (¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)) ↔ ∀𝑦𝑧 ¬ ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ∧ (𝑧 ∈ (1st𝐴) ∧ (𝑧 +Q 𝑞) ∈ (2nd𝐵)))))
6743, 66mpbird 156 . 2 ((𝐴<P 𝐵𝑞Q) → ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
6867ralrimiva 2392 1 (𝐴<P 𝐵 → ∀𝑞Q ¬ (𝑞 ∈ (1st𝐶) ∧ 𝑞 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  w3a 885  wal 1241   = wceq 1243  wex 1381  wcel 1393  wral 2306  {crab 2310  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378   +Q cplq 6380   <Q cltq 6383  Pcnp 6389  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  ltexprlempr  6706
  Copyright terms: Public domain W3C validator