ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgblem GIF version

Theorem algcvgblem 9888
Description: Lemma for algcvgb 9889. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))

Proof of Theorem algcvgblem
StepHypRef Expression
1 nn0z 8265 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 0z 8256 . . . . . . . . 9 0 ∈ ℤ
3 zdceq 8316 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
41, 2, 3sylancl 392 . . . . . . . 8 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
54dcned 2212 . . . . . . 7 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
6 imordc 796 . . . . . . 7 (DECID 𝑁 ≠ 0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
75, 6syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
87adantl 262 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
9 nn0z 8265 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 zltnle 8291 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
112, 9, 10sylancr 393 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
1211adantr 261 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
13 nn0le0eq0 8210 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
1413notbid 592 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1514adantr 261 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1612, 15bitrd 177 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 = 0))
17 df-ne 2206 . . . . . . . . . . 11 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1816, 17syl6bbr 187 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀𝑀 ≠ 0))
1918anbi2d 437 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0)))
201adantl 262 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2120, 2, 3sylancl 392 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → DECID 𝑁 = 0)
22 nnedc 2211 . . . . . . . . . . . . 13 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2321, 22syl 14 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
24 breq1 3767 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀))
2523, 24syl6bi 152 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀)))
26 bi2 121 . . . . . . . . . . 11 ((𝑁 < 𝑀 ↔ 0 < 𝑀) → (0 < 𝑀𝑁 < 𝑀))
2725, 26syl6 29 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (0 < 𝑀𝑁 < 𝑀)))
2827impd 242 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) → 𝑁 < 𝑀))
2919, 28sylbird 159 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0) → 𝑁 < 𝑀))
3029expd 245 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
31 ax-1 5 . . . . . . 7 (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))
3230, 31jctir 296 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
33 jaob 631 . . . . . 6 (((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ↔ ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
3432, 33sylibr 137 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
358, 34sylbid 139 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
36 nn0ge0 8207 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantl 262 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 8190 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
39 nn0re 8190 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
40 0re 7027 . . . . . . . . 9 0 ∈ ℝ
41 lelttr 7106 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4240, 41mp3an1 1219 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4338, 39, 42syl2anr 274 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4437, 43mpand 405 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀 → 0 < 𝑀))
4544, 18sylibd 138 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀𝑀 ≠ 0))
4645imim2d 48 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑁 ≠ 0 → 𝑀 ≠ 0)))
4735, 46jcad 291 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
48 pm3.34 328 . . 3 (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)) → (𝑁 ≠ 0 → 𝑁 < 𝑀))
4947, 48impbid1 130 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
50 con34bdc 765 . . . . 5 (DECID 𝑁 = 0 → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
5121, 50syl 14 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
52 df-ne 2206 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
5352, 17imbi12i 228 . . . 4 ((𝑁 ≠ 0 → 𝑀 ≠ 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))
5451, 53syl6bbr 187 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (𝑁 ≠ 0 → 𝑀 ≠ 0)))
5554anbi2d 437 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
5649, 55bitr4d 180 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  DECID wdc 742   = wceq 1243  wcel 1393  wne 2204   class class class wbr 3764  cr 6888  0cc0 6889   < clt 7060  cle 7061  0cn0 8181  cz 8245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246
This theorem is referenced by:  algcvgb  9889
  Copyright terms: Public domain W3C validator