ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapti GIF version

Theorem reapti 7570
Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 7613. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
reapti ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))

Proof of Theorem reapti
StepHypRef Expression
1 ltnr 7095 . . . . 5 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
21adantr 261 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐴)
3 oridm 674 . . . . . 6 ((𝐴 < 𝐴𝐴 < 𝐴) ↔ 𝐴 < 𝐴)
4 breq2 3768 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐴 < 𝐵))
5 breq1 3767 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 < 𝐴𝐵 < 𝐴))
64, 5orbi12d 707 . . . . . 6 (𝐴 = 𝐵 → ((𝐴 < 𝐴𝐴 < 𝐴) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
73, 6syl5bbr 183 . . . . 5 (𝐴 = 𝐵 → (𝐴 < 𝐴 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
87notbid 592 . . . 4 (𝐴 = 𝐵 → (¬ 𝐴 < 𝐴 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
92, 8syl5ibcom 144 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
10 reapval 7567 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1110notbid 592 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 # 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
129, 11sylibrd 158 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 → ¬ 𝐴 # 𝐵))
13 axapti 7090 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ¬ (𝐴 < 𝐵𝐵 < 𝐴)) → 𝐴 = 𝐵)
14133expia 1106 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) → 𝐴 = 𝐵))
1511, 14sylbid 139 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ 𝐴 # 𝐵𝐴 = 𝐵))
1612, 15impbid 120 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629   = wceq 1243  wcel 1393   class class class wbr 3764  cr 6888   < clt 7060   # creap 7565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-apti 6999
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-pnf 7062  df-mnf 7063  df-ltxr 7065  df-reap 7566
This theorem is referenced by:  rimul  7576  apreap  7578  apti  7613
  Copyright terms: Public domain W3C validator