ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prltlu GIF version

Theorem prltlu 6585
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
Assertion
Ref Expression
prltlu ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐵 <Q 𝐶)

Proof of Theorem prltlu
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 906 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐶𝑈)
2 elprnqu 6580 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → 𝐶Q)
323adant2 923 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐶Q)
4 elinp 6572 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
5 simpr2 911 . . . . . . 7 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
64, 5sylbi 114 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
763ad2ant1 925 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
8 eleq1 2100 . . . . . . . 8 (𝑞 = 𝐶 → (𝑞𝐿𝐶𝐿))
9 eleq1 2100 . . . . . . . 8 (𝑞 = 𝐶 → (𝑞𝑈𝐶𝑈))
108, 9anbi12d 442 . . . . . . 7 (𝑞 = 𝐶 → ((𝑞𝐿𝑞𝑈) ↔ (𝐶𝐿𝐶𝑈)))
1110notbid 592 . . . . . 6 (𝑞 = 𝐶 → (¬ (𝑞𝐿𝑞𝑈) ↔ ¬ (𝐶𝐿𝐶𝑈)))
1211rspcv 2652 . . . . 5 (𝐶Q → (∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) → ¬ (𝐶𝐿𝐶𝑈)))
133, 7, 12sylc 56 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → ¬ (𝐶𝐿𝐶𝑈))
14 ancom 253 . . . . . 6 ((𝐶𝐿𝐶𝑈) ↔ (𝐶𝑈𝐶𝐿))
1514notbii 594 . . . . 5 (¬ (𝐶𝐿𝐶𝑈) ↔ ¬ (𝐶𝑈𝐶𝐿))
16 imnan 624 . . . . 5 ((𝐶𝑈 → ¬ 𝐶𝐿) ↔ ¬ (𝐶𝑈𝐶𝐿))
1715, 16bitr4i 176 . . . 4 (¬ (𝐶𝐿𝐶𝑈) ↔ (𝐶𝑈 → ¬ 𝐶𝐿))
1813, 17sylib 127 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → (𝐶𝑈 → ¬ 𝐶𝐿))
191, 18mpd 13 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → ¬ 𝐶𝐿)
20 3simpa 901 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → (⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿))
21 prubl 6584 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
2220, 3, 21syl2anc 391 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
2319, 22mpd 13 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐵 <Q 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wcel 1393  wral 2306  wrex 2307  wss 2917  cop 3378   class class class wbr 3764  Qcnq 6378   <Q cltq 6383  Pcnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-enq 6445  df-nqqs 6446  df-ltnqqs 6451  df-inp 6564
This theorem is referenced by:  genpdisj  6621  prmuloc  6664  ltprordil  6687  ltpopr  6693  ltexprlemopu  6701  ltexprlemdisj  6704  ltexprlemfl  6707  ltexprlemfu  6709  ltexprlemru  6710  recexprlemdisj  6728  recexprlemss1l  6733  recexprlemss1u  6734
  Copyright terms: Public domain W3C validator