ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swoer GIF version

Theorem swoer 6134
Description: Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
swoer.2 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
swoer.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
Assertion
Ref Expression
swoer (𝜑𝑅 Er 𝑋)
Distinct variable groups:   𝑥,𝑦,𝑧, <   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)

Proof of Theorem swoer
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swoer.1 . . . . 5 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
2 difss 3070 . . . . 5 ((𝑋 × 𝑋) ∖ ( < < )) ⊆ (𝑋 × 𝑋)
31, 2eqsstri 2975 . . . 4 𝑅 ⊆ (𝑋 × 𝑋)
4 relxp 4447 . . . 4 Rel (𝑋 × 𝑋)
5 relss 4427 . . . 4 (𝑅 ⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel 𝑅))
63, 4, 5mp2 16 . . 3 Rel 𝑅
76a1i 9 . 2 (𝜑 → Rel 𝑅)
8 simpr 103 . . 3 ((𝜑𝑢𝑅𝑣) → 𝑢𝑅𝑣)
9 orcom 647 . . . . . 6 ((𝑢 < 𝑣𝑣 < 𝑢) ↔ (𝑣 < 𝑢𝑢 < 𝑣))
109a1i 9 . . . . 5 ((𝜑𝑢𝑅𝑣) → ((𝑢 < 𝑣𝑣 < 𝑢) ↔ (𝑣 < 𝑢𝑢 < 𝑣)))
1110notbid 592 . . . 4 ((𝜑𝑢𝑅𝑣) → (¬ (𝑢 < 𝑣𝑣 < 𝑢) ↔ ¬ (𝑣 < 𝑢𝑢 < 𝑣)))
123ssbri 3806 . . . . . . 7 (𝑢𝑅𝑣𝑢(𝑋 × 𝑋)𝑣)
1312adantl 262 . . . . . 6 ((𝜑𝑢𝑅𝑣) → 𝑢(𝑋 × 𝑋)𝑣)
14 brxp 4375 . . . . . 6 (𝑢(𝑋 × 𝑋)𝑣 ↔ (𝑢𝑋𝑣𝑋))
1513, 14sylib 127 . . . . 5 ((𝜑𝑢𝑅𝑣) → (𝑢𝑋𝑣𝑋))
161brdifun 6133 . . . . 5 ((𝑢𝑋𝑣𝑋) → (𝑢𝑅𝑣 ↔ ¬ (𝑢 < 𝑣𝑣 < 𝑢)))
1715, 16syl 14 . . . 4 ((𝜑𝑢𝑅𝑣) → (𝑢𝑅𝑣 ↔ ¬ (𝑢 < 𝑣𝑣 < 𝑢)))
1815simprd 107 . . . . 5 ((𝜑𝑢𝑅𝑣) → 𝑣𝑋)
1915simpld 105 . . . . 5 ((𝜑𝑢𝑅𝑣) → 𝑢𝑋)
201brdifun 6133 . . . . 5 ((𝑣𝑋𝑢𝑋) → (𝑣𝑅𝑢 ↔ ¬ (𝑣 < 𝑢𝑢 < 𝑣)))
2118, 19, 20syl2anc 391 . . . 4 ((𝜑𝑢𝑅𝑣) → (𝑣𝑅𝑢 ↔ ¬ (𝑣 < 𝑢𝑢 < 𝑣)))
2211, 17, 213bitr4d 209 . . 3 ((𝜑𝑢𝑅𝑣) → (𝑢𝑅𝑣𝑣𝑅𝑢))
238, 22mpbid 135 . 2 ((𝜑𝑢𝑅𝑣) → 𝑣𝑅𝑢)
24 simprl 483 . . . . 5 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝑢𝑅𝑣)
2512ad2antrl 459 . . . . . . 7 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝑢(𝑋 × 𝑋)𝑣)
2614simplbi 259 . . . . . . 7 (𝑢(𝑋 × 𝑋)𝑣𝑢𝑋)
2725, 26syl 14 . . . . . 6 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝑢𝑋)
2814simprbi 260 . . . . . . 7 (𝑢(𝑋 × 𝑋)𝑣𝑣𝑋)
2925, 28syl 14 . . . . . 6 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝑣𝑋)
3027, 29, 16syl2anc 391 . . . . 5 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → (𝑢𝑅𝑣 ↔ ¬ (𝑢 < 𝑣𝑣 < 𝑢)))
3124, 30mpbid 135 . . . 4 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → ¬ (𝑢 < 𝑣𝑣 < 𝑢))
32 simprr 484 . . . . 5 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝑣𝑅𝑤)
333brel 4392 . . . . . . . 8 (𝑣𝑅𝑤 → (𝑣𝑋𝑤𝑋))
3433simprd 107 . . . . . . 7 (𝑣𝑅𝑤𝑤𝑋)
3532, 34syl 14 . . . . . 6 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝑤𝑋)
361brdifun 6133 . . . . . 6 ((𝑣𝑋𝑤𝑋) → (𝑣𝑅𝑤 ↔ ¬ (𝑣 < 𝑤𝑤 < 𝑣)))
3729, 35, 36syl2anc 391 . . . . 5 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → (𝑣𝑅𝑤 ↔ ¬ (𝑣 < 𝑤𝑤 < 𝑣)))
3832, 37mpbid 135 . . . 4 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → ¬ (𝑣 < 𝑤𝑤 < 𝑣))
39 simpl 102 . . . . . . 7 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝜑)
40 swoer.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
4140swopolem 4042 . . . . . . 7 ((𝜑 ∧ (𝑢𝑋𝑤𝑋𝑣𝑋)) → (𝑢 < 𝑤 → (𝑢 < 𝑣𝑣 < 𝑤)))
4239, 27, 35, 29, 41syl13anc 1137 . . . . . 6 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → (𝑢 < 𝑤 → (𝑢 < 𝑣𝑣 < 𝑤)))
4340swopolem 4042 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑋𝑢𝑋𝑣𝑋)) → (𝑤 < 𝑢 → (𝑤 < 𝑣𝑣 < 𝑢)))
4439, 35, 27, 29, 43syl13anc 1137 . . . . . . 7 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → (𝑤 < 𝑢 → (𝑤 < 𝑣𝑣 < 𝑢)))
45 orcom 647 . . . . . . 7 ((𝑣 < 𝑢𝑤 < 𝑣) ↔ (𝑤 < 𝑣𝑣 < 𝑢))
4644, 45syl6ibr 151 . . . . . 6 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → (𝑤 < 𝑢 → (𝑣 < 𝑢𝑤 < 𝑣)))
4742, 46orim12d 700 . . . . 5 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → ((𝑢 < 𝑤𝑤 < 𝑢) → ((𝑢 < 𝑣𝑣 < 𝑤) ∨ (𝑣 < 𝑢𝑤 < 𝑣))))
48 or4 688 . . . . 5 (((𝑢 < 𝑣𝑣 < 𝑤) ∨ (𝑣 < 𝑢𝑤 < 𝑣)) ↔ ((𝑢 < 𝑣𝑣 < 𝑢) ∨ (𝑣 < 𝑤𝑤 < 𝑣)))
4947, 48syl6ib 150 . . . 4 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → ((𝑢 < 𝑤𝑤 < 𝑢) → ((𝑢 < 𝑣𝑣 < 𝑢) ∨ (𝑣 < 𝑤𝑤 < 𝑣))))
5031, 38, 49mtord 697 . . 3 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → ¬ (𝑢 < 𝑤𝑤 < 𝑢))
511brdifun 6133 . . . 4 ((𝑢𝑋𝑤𝑋) → (𝑢𝑅𝑤 ↔ ¬ (𝑢 < 𝑤𝑤 < 𝑢)))
5227, 35, 51syl2anc 391 . . 3 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → (𝑢𝑅𝑤 ↔ ¬ (𝑢 < 𝑤𝑤 < 𝑢)))
5350, 52mpbird 156 . 2 ((𝜑 ∧ (𝑢𝑅𝑣𝑣𝑅𝑤)) → 𝑢𝑅𝑤)
54 swoer.2 . . . . . . 7 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
5554, 40swopo 4043 . . . . . 6 (𝜑< Po 𝑋)
56 poirr 4044 . . . . . 6 (( < Po 𝑋𝑢𝑋) → ¬ 𝑢 < 𝑢)
5755, 56sylan 267 . . . . 5 ((𝜑𝑢𝑋) → ¬ 𝑢 < 𝑢)
58 pm1.2 673 . . . . 5 ((𝑢 < 𝑢𝑢 < 𝑢) → 𝑢 < 𝑢)
5957, 58nsyl 558 . . . 4 ((𝜑𝑢𝑋) → ¬ (𝑢 < 𝑢𝑢 < 𝑢))
60 simpr 103 . . . . 5 ((𝜑𝑢𝑋) → 𝑢𝑋)
611brdifun 6133 . . . . 5 ((𝑢𝑋𝑢𝑋) → (𝑢𝑅𝑢 ↔ ¬ (𝑢 < 𝑢𝑢 < 𝑢)))
6260, 60, 61syl2anc 391 . . . 4 ((𝜑𝑢𝑋) → (𝑢𝑅𝑢 ↔ ¬ (𝑢 < 𝑢𝑢 < 𝑢)))
6359, 62mpbird 156 . . 3 ((𝜑𝑢𝑋) → 𝑢𝑅𝑢)
643ssbri 3806 . . . . 5 (𝑢𝑅𝑢𝑢(𝑋 × 𝑋)𝑢)
65 brxp 4375 . . . . . 6 (𝑢(𝑋 × 𝑋)𝑢 ↔ (𝑢𝑋𝑢𝑋))
6665simplbi 259 . . . . 5 (𝑢(𝑋 × 𝑋)𝑢𝑢𝑋)
6764, 66syl 14 . . . 4 (𝑢𝑅𝑢𝑢𝑋)
6867adantl 262 . . 3 ((𝜑𝑢𝑅𝑢) → 𝑢𝑋)
6963, 68impbida 528 . 2 (𝜑 → (𝑢𝑋𝑢𝑅𝑢))
707, 23, 53, 69iserd 6132 1 (𝜑𝑅 Er 𝑋)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  w3a 885   = wceq 1243  wcel 1393  cdif 2914  cun 2915  wss 2917   class class class wbr 3764   Po wpo 4031   × cxp 4343  ccnv 4344  Rel wrel 4350   Er wer 6103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-po 4033  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-er 6106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator