Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz7.2 GIF version

Theorem tz7.2 4091
 Description: Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent E Fr 𝐴. (Contributed by NM, 4-May-1994.)
Assertion
Ref Expression
tz7.2 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))

Proof of Theorem tz7.2
StepHypRef Expression
1 trss 3863 . . 3 (Tr 𝐴 → (𝐵𝐴𝐵𝐴))
2 efrirr 4090 . . . . 5 ( E Fr 𝐴 → ¬ 𝐴𝐴)
3 eleq1 2100 . . . . . 6 (𝐵 = 𝐴 → (𝐵𝐴𝐴𝐴))
43notbid 592 . . . . 5 (𝐵 = 𝐴 → (¬ 𝐵𝐴 ↔ ¬ 𝐴𝐴))
52, 4syl5ibrcom 146 . . . 4 ( E Fr 𝐴 → (𝐵 = 𝐴 → ¬ 𝐵𝐴))
65necon2ad 2262 . . 3 ( E Fr 𝐴 → (𝐵𝐴𝐵𝐴))
71, 6anim12ii 325 . 2 ((Tr 𝐴 ∧ E Fr 𝐴) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
873impia 1101 1 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ∧ w3a 885   = wceq 1243   ∈ wcel 1393   ≠ wne 2204   ⊆ wss 2917  Tr wtr 3854   E cep 4024   Fr wfr 4065 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-tr 3855  df-eprel 4026  df-frfor 4068  df-frind 4069 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator