Proof of Theorem nlimsucg
Step | Hyp | Ref
| Expression |
1 | | limord 4132 |
. . . . . 6
⊢ (Lim suc
𝐴 → Ord suc 𝐴) |
2 | | ordsuc 4287 |
. . . . . 6
⊢ (Ord
𝐴 ↔ Ord suc 𝐴) |
3 | 1, 2 | sylibr 137 |
. . . . 5
⊢ (Lim suc
𝐴 → Ord 𝐴) |
4 | | limuni 4133 |
. . . . 5
⊢ (Lim suc
𝐴 → suc 𝐴 = ∪
suc 𝐴) |
5 | 3, 4 | jca 290 |
. . . 4
⊢ (Lim suc
𝐴 → (Ord 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴)) |
6 | | ordtr 4115 |
. . . . . . . 8
⊢ (Ord
𝐴 → Tr 𝐴) |
7 | | unisucg 4151 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc
𝐴 = 𝐴)) |
8 | 7 | biimpa 280 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ Tr 𝐴) → ∪ suc
𝐴 = 𝐴) |
9 | 6, 8 | sylan2 270 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ Ord 𝐴) → ∪ suc
𝐴 = 𝐴) |
10 | 9 | eqeq2d 2051 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ Ord 𝐴) → (suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴)) |
11 | | ordirr 4267 |
. . . . . . . . 9
⊢ (Ord
𝐴 → ¬ 𝐴 ∈ 𝐴) |
12 | | eleq2 2101 |
. . . . . . . . . 10
⊢ (suc
𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) |
13 | 12 | notbid 592 |
. . . . . . . . 9
⊢ (suc
𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
14 | 11, 13 | syl5ibrcom 146 |
. . . . . . . 8
⊢ (Ord
𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
15 | | sucidg 4153 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) |
16 | 15 | con3i 562 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
17 | 14, 16 | syl6 29 |
. . . . . . 7
⊢ (Ord
𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
18 | 17 | adantl 262 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ Ord 𝐴) → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
19 | 10, 18 | sylbid 139 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ Ord 𝐴) → (suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
20 | 19 | expimpd 345 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ((Ord 𝐴 ∧ suc 𝐴 = ∪ suc 𝐴) → ¬ 𝐴 ∈ 𝑉)) |
21 | 5, 20 | syl5 28 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
22 | 21 | con2d 554 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴)) |
23 | 22 | pm2.43i 43 |
1
⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |