ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordsuc GIF version

Theorem ordsuc 4287
Description: The successor of an ordinal class is ordinal. (Contributed by NM, 3-Apr-1995.) (Constructive proof by Mario Carneiro and Jim Kingdon, 20-Jul-2019.)
Assertion
Ref Expression
ordsuc (Ord 𝐴 ↔ Ord suc 𝐴)

Proof of Theorem ordsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordsucim 4226 . 2 (Ord 𝐴 → Ord suc 𝐴)
2 en2lp 4278 . . . . . . . . . 10 ¬ (𝑥𝐴𝐴𝑥)
3 eleq1 2100 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
43biimpac 282 . . . . . . . . . . . 12 ((𝑦𝑥𝑦 = 𝐴) → 𝐴𝑥)
54anim2i 324 . . . . . . . . . . 11 ((𝑥𝐴 ∧ (𝑦𝑥𝑦 = 𝐴)) → (𝑥𝐴𝐴𝑥))
65expr 357 . . . . . . . . . 10 ((𝑥𝐴𝑦𝑥) → (𝑦 = 𝐴 → (𝑥𝐴𝐴𝑥)))
72, 6mtoi 590 . . . . . . . . 9 ((𝑥𝐴𝑦𝑥) → ¬ 𝑦 = 𝐴)
87adantl 262 . . . . . . . 8 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → ¬ 𝑦 = 𝐴)
9 elelsuc 4146 . . . . . . . . . . . . . . 15 (𝑥𝐴𝑥 ∈ suc 𝐴)
109adantr 261 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑦𝑥) → 𝑥 ∈ suc 𝐴)
11 ordelss 4116 . . . . . . . . . . . . . 14 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → 𝑥 ⊆ suc 𝐴)
1210, 11sylan2 270 . . . . . . . . . . . . 13 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → 𝑥 ⊆ suc 𝐴)
1312sseld 2944 . . . . . . . . . . . 12 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → (𝑦𝑥𝑦 ∈ suc 𝐴))
1413expr 357 . . . . . . . . . . 11 ((Ord suc 𝐴𝑥𝐴) → (𝑦𝑥 → (𝑦𝑥𝑦 ∈ suc 𝐴)))
1514pm2.43d 44 . . . . . . . . . 10 ((Ord suc 𝐴𝑥𝐴) → (𝑦𝑥𝑦 ∈ suc 𝐴))
1615impr 361 . . . . . . . . 9 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦 ∈ suc 𝐴)
17 elsuci 4140 . . . . . . . . 9 (𝑦 ∈ suc 𝐴 → (𝑦𝐴𝑦 = 𝐴))
1816, 17syl 14 . . . . . . . 8 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → (𝑦𝐴𝑦 = 𝐴))
198, 18ecased 1239 . . . . . . 7 ((Ord suc 𝐴 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
2019ancom2s 500 . . . . . 6 ((Ord suc 𝐴 ∧ (𝑦𝑥𝑥𝐴)) → 𝑦𝐴)
2120ex 108 . . . . 5 (Ord suc 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2221alrimivv 1755 . . . 4 (Ord suc 𝐴 → ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
23 dftr2 3856 . . . 4 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2422, 23sylibr 137 . . 3 (Ord suc 𝐴 → Tr 𝐴)
25 sssucid 4152 . . . 4 𝐴 ⊆ suc 𝐴
26 trssord 4117 . . . 4 ((Tr 𝐴𝐴 ⊆ suc 𝐴 ∧ Ord suc 𝐴) → Ord 𝐴)
2725, 26mp3an2 1220 . . 3 ((Tr 𝐴 ∧ Ord suc 𝐴) → Ord 𝐴)
2824, 27mpancom 399 . 2 (Ord suc 𝐴 → Ord 𝐴)
291, 28impbii 117 1 (Ord 𝐴 ↔ Ord suc 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98  wo 629  wal 1241   = wceq 1243  wcel 1393  wss 2917  Tr wtr 3854  Ord word 4099  suc csuc 4102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-uni 3581  df-tr 3855  df-iord 4103  df-suc 4108
This theorem is referenced by:  nlimsucg  4290  ordpwsucss  4291
  Copyright terms: Public domain W3C validator