Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucidg GIF version

Theorem sucidg 4153
 Description: Part of Proposition 7.23 of [TakeutiZaring] p. 41 (generalized). (Contributed by NM, 25-Mar-1995.) (Proof shortened by Scott Fenton, 20-Feb-2012.)
Assertion
Ref Expression
sucidg (𝐴𝑉𝐴 ∈ suc 𝐴)

Proof of Theorem sucidg
StepHypRef Expression
1 eqid 2040 . . 3 𝐴 = 𝐴
21olci 651 . 2 (𝐴𝐴𝐴 = 𝐴)
3 elsucg 4141 . 2 (𝐴𝑉 → (𝐴 ∈ suc 𝐴 ↔ (𝐴𝐴𝐴 = 𝐴)))
42, 3mpbiri 157 1 (𝐴𝑉𝐴 ∈ suc 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 629   = wceq 1243   ∈ wcel 1393  suc csuc 4102 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-suc 4108 This theorem is referenced by:  sucid  4154  nsuceq0g  4155  trsuc  4159  sucssel  4161  ordsucg  4228  sucunielr  4236  suc11g  4281  nlimsucg  4290  onpsssuc  4295  peano2b  4337  frecsuclem2  5989  phplem4dom  6324  phplem4on  6329  dif1en  6337  fin0  6342  fin0or  6343  bj-peano4  10080
 Copyright terms: Public domain W3C validator