ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expimpd Structured version   GIF version

Theorem expimpd 345
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.)
Hypothesis
Ref Expression
expimpd.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
expimpd (φ → ((ψ χ) → θ))

Proof of Theorem expimpd
StepHypRef Expression
1 expimpd.1 . . 3 ((φ ψ) → (χθ))
21ex 108 . 2 (φ → (ψ → (χθ)))
32impd 242 1 (φ → ((ψ χ) → θ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem is referenced by:  euotd  3961  swopo  4013  reusv3  4138  ralxfrd  4140  rexxfrd  4141  nlimsucg  4222  poirr2  4640  elpreima  5207  fmptco  5251  tposfo2  5800  nnm00  6009  th3qlem1  6115  recexprlemss1l  6463  recexprlemss1u  6464  bj-findis  7393
  Copyright terms: Public domain W3C validator