![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expimpd | GIF version |
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 108 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 242 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem is referenced by: euotd 3991 swopo 4043 reusv3 4192 ralxfrd 4194 rexxfrd 4195 nlimsucg 4290 poirr2 4717 elpreima 5286 fmptco 5330 tposfo2 5882 nnm00 6102 th3qlem1 6208 recexprlemss1l 6733 recexprlemss1u 6734 cauappcvgprlemladdru 6754 cauappcvgprlemladdrl 6755 caucvgprlemladdrl 6776 uzind 8349 ledivge1le 8652 xltnegi 8748 ixxssixx 8771 expnegzap 9289 shftlem 9417 cau3lem 9710 caubnd2 9713 climuni 9814 2clim 9822 bj-findis 10104 |
Copyright terms: Public domain | W3C validator |