Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.54dc GIF version

Theorem pm4.54dc 805
 Description: Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.54dc (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))

Proof of Theorem pm4.54dc
StepHypRef Expression
1 dcn 746 . . . . 5 (DECID 𝜑DECID ¬ 𝜑)
2 dfandc 778 . . . . 5 (DECID ¬ 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓))))
31, 2syl 14 . . . 4 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓))))
43imp 115 . . 3 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ ¬ (¬ 𝜑 → ¬ 𝜓)))
5 pm4.66dc 802 . . . . 5 (DECID 𝜑 → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
65adantr 261 . . . 4 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)))
76notbid 592 . . 3 ((DECID 𝜑DECID 𝜓) → (¬ (¬ 𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))
84, 7bitrd 177 . 2 ((DECID 𝜑DECID 𝜓) → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓)))
98ex 108 1 (DECID 𝜑 → (DECID 𝜓 → ((¬ 𝜑𝜓) ↔ ¬ (𝜑 ∨ ¬ 𝜓))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 629  DECID wdc 742 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743 This theorem is referenced by:  pm4.55dc  846
 Copyright terms: Public domain W3C validator