ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq2 Unicode version

Theorem neleq2 2302
Description: Equality theorem for negated membership. (Contributed by NM, 20-Nov-1994.)
Assertion
Ref Expression
neleq2  |-  ( A  =  B  ->  ( C  e/  A  <->  C  e/  B ) )

Proof of Theorem neleq2
StepHypRef Expression
1 eleq2 2101 . . 3  |-  ( A  =  B  ->  ( C  e.  A  <->  C  e.  B ) )
21notbid 592 . 2  |-  ( A  =  B  ->  ( -.  C  e.  A  <->  -.  C  e.  B ) )
3 df-nel 2207 . 2  |-  ( C  e/  A  <->  -.  C  e.  A )
4 df-nel 2207 . 2  |-  ( C  e/  B  <->  -.  C  e.  B )
52, 3, 43bitr4g 212 1  |-  ( A  =  B  ->  ( C  e/  A  <->  C  e/  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393    e/ wnel 2205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036  df-nel 2207
This theorem is referenced by:  neleq12d  2303
  Copyright terms: Public domain W3C validator