ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neleq12d GIF version

Theorem neleq12d 2303
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.)
Hypotheses
Ref Expression
neleq12d.1 (𝜑𝐴 = 𝐵)
neleq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
neleq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem neleq12d
StepHypRef Expression
1 neleq12d.1 . . 3 (𝜑𝐴 = 𝐵)
2 neleq1 2301 . . 3 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
31, 2syl 14 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
4 neleq12d.2 . . 3 (𝜑𝐶 = 𝐷)
5 neleq2 2302 . . 3 (𝐶 = 𝐷 → (𝐵𝐶𝐵𝐷))
64, 5syl 14 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
73, 6bitrd 177 1 (𝜑 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1243  wnel 2205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036  df-nel 2207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator