Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbii | GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rexbii | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | rexbidv 2327 | . 2 ⊢ (⊤ → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
4 | 3 | trud 1252 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ⊤wtru 1244 ∃wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-rex 2312 |
This theorem is referenced by: 2rexbii 2333 r19.29r 2451 r19.42v 2467 rexcom13 2475 rexrot4 2476 3reeanv 2480 cbvrex2v 2542 rexcom4 2577 rexcom4a 2578 rexcom4b 2579 ceqsrex2v 2676 reu7 2736 0el 3241 iuncom 3663 iuncom4 3664 iuniin 3667 dfiunv2 3693 iunab 3703 iunin2 3720 iundif2ss 3722 iunun 3734 iunxiun 3736 iunpwss 3743 inuni 3909 iunopab 4018 sucel 4147 iunpw 4211 xpiundi 4398 xpiundir 4399 reliin 4459 rexxpf 4483 iunxpf 4484 cnvuni 4521 dmiun 4544 dfima3 4671 rniun 4734 dminxp 4765 imaco 4826 coiun 4830 isarep1 4985 rexrn 5304 ralrn 5305 elrnrexdmb 5307 fnasrn 5341 fnasrng 5343 rexima 5394 ralima 5395 abrexco 5398 imaiun 5399 fliftcnv 5435 abrexex2g 5747 abrexex2 5751 qsid 6171 eroveu 6197 genpdflem 6605 genpassl 6622 genpassu 6623 nqprm 6640 nqprrnd 6641 ltnqpr 6691 ltnqpri 6692 ltexprlemm 6698 ltexprlemopl 6699 ltexprlemopu 6701 caucvgprprlemaddq 6806 caucvgprprlem1 6807 caucvgsrlemgt1 6879 elreal 6905 axcaucvglemres 6973 ublbneg 8548 4fvwrd4 8997 caucvgre 9580 rexanuz 9587 resqrexlemglsq 9620 resqrexlemsqa 9622 resqrexlemex 9623 rersqreu 9626 clim0 9806 |
Copyright terms: Public domain | W3C validator |