ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopl GIF version

Theorem ltexprlemopl 6699
Description: The lower cut of our constructed difference is open. Lemma for ltexpri 6711. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemopl ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemopl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
21ltexprlemell 6696 . . . 4 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
32simprbi 260 . . 3 (𝑞 ∈ (1st𝐶) → ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
4 19.42v 1786 . . . . . . . 8 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5 19.42v 1786 . . . . . . . . 9 (∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
65anbi2i 430 . . . . . . . 8 ((𝐴<P 𝐵 ∧ ∃𝑦(𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
74, 6bitri 173 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ↔ (𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
8 ltrelpr 6603 . . . . . . . . . . . . . 14 <P ⊆ (P × P)
98brel 4392 . . . . . . . . . . . . 13 (𝐴<P 𝐵 → (𝐴P𝐵P))
109simprd 107 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐵P)
11 prop 6573 . . . . . . . . . . . . 13 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
12 prnmaxl 6586 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1311, 12sylan 267 . . . . . . . . . . . 12 ((𝐵P ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1410, 13sylan 267 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1514adantrl 447 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
1615adantrl 447 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑠 ∈ (1st𝐵)(𝑦 +Q 𝑞) <Q 𝑠)
179simpld 105 . . . . . . . . . . . . . . 15 (𝐴<P 𝐵𝐴P)
1817ad2antrr 457 . . . . . . . . . . . . . 14 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝐴P)
19 simplrr 488 . . . . . . . . . . . . . . 15 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2019simpld 105 . . . . . . . . . . . . . 14 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 ∈ (2nd𝐴))
21 prop 6573 . . . . . . . . . . . . . . 15 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
22 elprnqu 6580 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2321, 22sylan 267 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
2418, 20, 23syl2anc 391 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦Q)
25 simplrl 487 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑞Q)
26 ltaddnq 6505 . . . . . . . . . . . . 13 ((𝑦Q𝑞Q) → 𝑦 <Q (𝑦 +Q 𝑞))
2724, 25, 26syl2anc 391 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 <Q (𝑦 +Q 𝑞))
28 simprr 484 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 +Q 𝑞) <Q 𝑠)
29 ltsonq 6496 . . . . . . . . . . . . 13 <Q Or Q
30 ltrelnq 6463 . . . . . . . . . . . . 13 <Q ⊆ (Q × Q)
3129, 30sotri 4720 . . . . . . . . . . . 12 ((𝑦 <Q (𝑦 +Q 𝑞) ∧ (𝑦 +Q 𝑞) <Q 𝑠) → 𝑦 <Q 𝑠)
3227, 28, 31syl2anc 391 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑦 <Q 𝑠)
3310ad2antrr 457 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝐵P)
34 simprl 483 . . . . . . . . . . . . 13 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑠 ∈ (1st𝐵))
35 elprnql 6579 . . . . . . . . . . . . . 14 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (1st𝐵)) → 𝑠Q)
3611, 35sylan 267 . . . . . . . . . . . . 13 ((𝐵P𝑠 ∈ (1st𝐵)) → 𝑠Q)
3733, 34, 36syl2anc 391 . . . . . . . . . . . 12 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → 𝑠Q)
38 ltexnqq 6506 . . . . . . . . . . . 12 ((𝑦Q𝑠Q) → (𝑦 <Q 𝑠 ↔ ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠))
3924, 37, 38syl2anc 391 . . . . . . . . . . 11 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (𝑦 <Q 𝑠 ↔ ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠))
4032, 39mpbid 135 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → ∃𝑟Q (𝑦 +Q 𝑟) = 𝑠)
41 simplrr 488 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q 𝑠)
42 simprr 484 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑟) = 𝑠)
4341, 42breqtrrd 3790 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟))
4425adantr 261 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑞Q)
45 simprl 483 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑟Q)
4624adantr 261 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑦Q)
47 ltanqg 6498 . . . . . . . . . . . . . . 15 ((𝑞Q𝑟Q𝑦Q) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
4844, 45, 46, 47syl3anc 1135 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ↔ (𝑦 +Q 𝑞) <Q (𝑦 +Q 𝑟)))
4943, 48mpbird 156 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑞 <Q 𝑟)
5020adantr 261 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑦 ∈ (2nd𝐴))
51 simplrl 487 . . . . . . . . . . . . . . 15 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → 𝑠 ∈ (1st𝐵))
5242, 51eqeltrd 2114 . . . . . . . . . . . . . 14 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 +Q 𝑟) ∈ (1st𝐵))
5350, 52jca 290 . . . . . . . . . . . . 13 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))
5449, 45, 53jca32 293 . . . . . . . . . . . 12 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ (𝑟Q ∧ (𝑦 +Q 𝑟) = 𝑠)) → (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5554expr 357 . . . . . . . . . . 11 ((((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) ∧ 𝑟Q) → ((𝑦 +Q 𝑟) = 𝑠 → (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
5655reximdva 2421 . . . . . . . . . 10 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → (∃𝑟Q (𝑦 +Q 𝑟) = 𝑠 → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))))
5740, 56mpd 13 . . . . . . . . 9 (((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) ∧ (𝑠 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) <Q 𝑠)) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5816, 57rexlimddv 2437 . . . . . . . 8 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
5958eximi 1491 . . . . . . 7 (∃𝑦(𝐴<P 𝐵 ∧ (𝑞Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
607, 59sylbir 125 . . . . . 6 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
61 rexcom4 2577 . . . . . 6 (∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ ∃𝑦𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6260, 61sylibr 137 . . . . 5 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
63 19.42v 1786 . . . . . . 7 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
64 19.42v 1786 . . . . . . . 8 (∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
6564anbi2i 430 . . . . . . 7 ((𝑞 <Q 𝑟 ∧ ∃𝑦(𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6663, 65bitri 173 . . . . . 6 (∃𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6766rexbii 2331 . . . . 5 (∃𝑟Q𝑦(𝑞 <Q 𝑟 ∧ (𝑟Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))) ↔ ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
6862, 67sylib 127 . . . 4 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
691ltexprlemell 6696 . . . . . 6 (𝑟 ∈ (1st𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵))))
7069anbi2i 430 . . . . 5 ((𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
7170rexbii 2331 . . . 4 (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)) ↔ ∃𝑟Q (𝑞 <Q 𝑟 ∧ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑟) ∈ (1st𝐵)))))
7268, 71sylibr 137 . . 3 ((𝐴<P 𝐵 ∧ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
733, 72sylanr2 385 . 2 ((𝐴<P 𝐵 ∧ (𝑞Q𝑞 ∈ (1st𝐶))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
74733impb 1100 1 ((𝐴<P 𝐵𝑞Q𝑞 ∈ (1st𝐶)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wex 1381  wcel 1393  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378   +Q cplq 6380   <Q cltq 6383  Pcnp 6389  <P cltp 6393
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-ltnqqs 6451  df-inp 6564  df-iltp 6568
This theorem is referenced by:  ltexprlemrnd  6703
  Copyright terms: Public domain W3C validator