ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq GIF version

Theorem resqrexlemglsq 9620
Description: Lemma for resqrex 9624. The sequence formed by squaring each term of 𝐹 converges to (𝐿↑2). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemglsq (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗,𝑘,𝑖,𝑦,𝑧   𝑥,𝐹,𝑘   𝑒,𝐿,𝑗,𝑘,𝑖,𝑦,𝑧   𝜑,𝑒,𝑖,𝑗,𝑘,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥)

Proof of Theorem resqrexlemglsq
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simpr 103 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
2 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
3 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
4 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
52, 3, 4resqrexlemf 9605 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
65adantr 261 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
7 1nn 7925 . . . . . . . . . 10 1 ∈ ℕ
87a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
96, 8ffvelrnd 5303 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
109rpred 8622 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ)
11 resqrexlemgt0.rr . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
1211adantr 261 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝐿 ∈ ℝ)
1310, 12readdcld 7055 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ)
149rpgt0d 8625 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 < (𝐹‘1))
15 resqrexlemgt0.lim . . . . . . . . 9 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
162, 3, 4, 11, 15resqrexlemgt0 9618 . . . . . . . 8 (𝜑 → 0 ≤ 𝐿)
1716adantr 261 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 0 ≤ 𝐿)
18 addgtge0 7445 . . . . . . 7 ((((𝐹‘1) ∈ ℝ ∧ 𝐿 ∈ ℝ) ∧ (0 < (𝐹‘1) ∧ 0 ≤ 𝐿)) → 0 < ((𝐹‘1) + 𝐿))
1910, 12, 14, 17, 18syl22anc 1136 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 0 < ((𝐹‘1) + 𝐿))
2013, 19elrpd 8620 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
211, 20rpdivcld 8640 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
22 fveq2 5178 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
2322breq1d 3774 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑒)))
2422oveq1d 5527 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑘) + 𝑒))
2524breq2d 3776 . . . . . . . . . . 11 (𝑖 = 𝑘 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑒)))
2623, 25anbi12d 442 . . . . . . . . . 10 (𝑖 = 𝑘 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒))))
2726cbvralv 2533 . . . . . . . . 9 (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
2827rexbii 2331 . . . . . . . 8 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
2928ralbii 2330 . . . . . . 7 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
3015, 29sylib 127 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)))
31 oveq2 5520 . . . . . . . . . 10 (𝑒 = 𝑓 → (𝐿 + 𝑒) = (𝐿 + 𝑓))
3231breq2d 3776 . . . . . . . . 9 (𝑒 = 𝑓 → ((𝐹𝑘) < (𝐿 + 𝑒) ↔ (𝐹𝑘) < (𝐿 + 𝑓)))
33 oveq2 5520 . . . . . . . . . 10 (𝑒 = 𝑓 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑘) + 𝑓))
3433breq2d 3776 . . . . . . . . 9 (𝑒 = 𝑓 → (𝐿 < ((𝐹𝑘) + 𝑒) ↔ 𝐿 < ((𝐹𝑘) + 𝑓)))
3532, 34anbi12d 442 . . . . . . . 8 (𝑒 = 𝑓 → (((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
3635rexralbidv 2350 . . . . . . 7 (𝑒 = 𝑓 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓))))
3736cbvralv 2533 . . . . . 6 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
3830, 37sylib 127 . . . . 5 (𝜑 → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
3938adantr 261 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)))
40 oveq2 5520 . . . . . . . 8 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 + 𝑓) = (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
4140breq2d 3776 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) < (𝐿 + 𝑓) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
42 oveq2 5520 . . . . . . . 8 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝑓) = ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))
4342breq2d 3776 . . . . . . 7 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (𝐿 < ((𝐹𝑘) + 𝑓) ↔ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
4441, 43anbi12d 442 . . . . . 6 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
4544rexralbidv 2350 . . . . 5 (𝑓 = (𝑒 / ((𝐹‘1) + 𝐿)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
4645rspcv 2652 . . . 4 ((𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+ → (∀𝑓 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑓) ∧ 𝐿 < ((𝐹𝑘) + 𝑓)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))))
4721, 39, 46sylc 56 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))))
48 simpllr 486 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑗 ∈ ℕ)
49 simplr 482 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ (ℤ𝑗))
50 eluznn 8538 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
5148, 49, 50syl2anc 391 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑘 ∈ ℕ)
526ad3antrrr 461 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐹:ℕ⟶ℝ+)
5352, 51ffvelrnd 5303 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ+)
54 2z 8273 . . . . . . . . . . 11 2 ∈ ℤ
5554a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 2 ∈ ℤ)
5653, 55rpexpcld 9404 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ+)
57 fveq2 5178 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
5857oveq1d 5527 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
59 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
6058, 59fvmptg 5248 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6151, 56, 60syl2anc 391 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) = ((𝐹𝑘)↑2))
6253rpred 8622 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℝ)
6362recnd 7054 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) ∈ ℂ)
6412ad3antrrr 461 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℝ)
6564recnd 7054 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ∈ ℂ)
66 subsq 9358 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℂ ∧ 𝐿 ∈ ℂ) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6763, 65, 66syl2anc 391 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) = (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)))
6862, 64readdcld 7055 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ∈ ℝ)
6962, 64resubcld 7379 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) ∈ ℝ)
7068, 69remulcld 7056 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
7113ad3antrrr 461 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ)
7271, 69remulcld 7056 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) ∈ ℝ)
731ad3antrrr 461 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ+)
7473rpred 8622 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝑒 ∈ ℝ)
753ad4antr 463 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐴 ∈ ℝ)
764ad4antr 463 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐴)
7715ad4antr 463 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
782, 75, 76, 64, 77, 51resqrexlemoverl 9619 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 𝐿 ≤ (𝐹𝑘))
7962, 64subge0d 7526 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (0 ≤ ((𝐹𝑘) − 𝐿) ↔ 𝐿 ≤ (𝐹𝑘)))
8078, 79mpbird 156 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ ((𝐹𝑘) − 𝐿))
81 fveq2 5178 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝐹𝑘) = (𝐹‘1))
8281oveq1d 5527 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿))
83 eqle 7109 . . . . . . . . . . . . . 14 ((((𝐹𝑘) + 𝐿) ∈ ℝ ∧ ((𝐹𝑘) + 𝐿) = ((𝐹‘1) + 𝐿)) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8468, 82, 83syl2an 273 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 𝑘 = 1) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
8562adantr 261 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ∈ ℝ)
8610ad4antr 463 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹‘1) ∈ ℝ)
8764adantr 261 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐿 ∈ ℝ)
883ad5antr 465 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝐴 ∈ ℝ)
894ad5antr 465 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 0 ≤ 𝐴)
907a1i 9 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 ∈ ℕ)
9151adantr 261 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 𝑘 ∈ ℕ)
92 simpr 103 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → 1 < 𝑘)
932, 88, 89, 90, 91, 92resqrexlemdecn 9610 . . . . . . . . . . . . . . 15 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) < (𝐹‘1))
9485, 86, 93ltled 7135 . . . . . . . . . . . . . 14 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → (𝐹𝑘) ≤ (𝐹‘1))
9585, 86, 87, 94leadd1dd 7550 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) ∧ 1 < 𝑘) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
96 nn1gt1 7947 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 = 1 ∨ 1 < 𝑘))
9751, 96syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑘 = 1 ∨ 1 < 𝑘))
9884, 95, 97mpjaodan 711 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) + 𝐿) ≤ ((𝐹‘1) + 𝐿))
9968, 71, 69, 80, 98lemul1ad 7905 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) ≤ (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)))
100 simprl 483 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))))
10121ad3antrrr 461 . . . . . . . . . . . . . . 15 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ+)
102101rpred 8622 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝑒 / ((𝐹‘1) + 𝐿)) ∈ ℝ)
10362, 64, 102ltsubadd2d 7534 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)) ↔ (𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿)))))
104100, 103mpbird 156 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿)))
10520ad3antrrr 461 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹‘1) + 𝐿) ∈ ℝ+)
10669, 74, 105ltmuldiv2d 8671 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒 ↔ ((𝐹𝑘) − 𝐿) < (𝑒 / ((𝐹‘1) + 𝐿))))
107104, 106mpbird 156 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹‘1) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10870, 72, 74, 99, 107lelttrd 7139 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘) + 𝐿) · ((𝐹𝑘) − 𝐿)) < 𝑒)
10967, 108eqbrtrd 3784 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒)
11062resqcld 9406 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) ∈ ℝ)
11164resqcld 9406 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ∈ ℝ)
112110, 111, 74ltsubadd2d 7534 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((((𝐹𝑘)↑2) − (𝐿↑2)) < 𝑒 ↔ ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒)))
113109, 112mpbid 135 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐹𝑘)↑2) < ((𝐿↑2) + 𝑒))
11461, 113eqbrtrd 3784 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐿↑2) + 𝑒))
11561, 110eqeltrd 2114 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) ∈ ℝ)
116115, 74readdcld 7055 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
11717ad3antrrr 461 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → 0 ≤ 𝐿)
118 le2sq2 9329 . . . . . . . . . 10 (((𝐿 ∈ ℝ ∧ 0 ≤ 𝐿) ∧ ((𝐹𝑘) ∈ ℝ ∧ 𝐿 ≤ (𝐹𝑘))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
11964, 117, 62, 78, 118syl22anc 1136 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ ((𝐹𝑘)↑2))
120119, 61breqtrrd 3790 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) ≤ (𝐺𝑘))
121115, 73ltaddrpd 8656 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
122111, 115, 116, 120, 121lelttrd 7139 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → (𝐿↑2) < ((𝐺𝑘) + 𝑒))
123114, 122jca 290 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿))))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
124123ex 108 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
125124ralimdva 2387 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
126125reximdva 2421 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + (𝑒 / ((𝐹‘1) + 𝐿))) ∧ 𝐿 < ((𝐹𝑘) + (𝑒 / ((𝐹‘1) + 𝐿)))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒))))
12747, 126mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
128127ralrimiva 2392 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < ((𝐿↑2) + 𝑒) ∧ (𝐿↑2) < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wo 629   = wceq 1243  wcel 1393  wral 2306  wrex 2307  {csn 3375   class class class wbr 3764  cmpt 3818   × cxp 4343  wf 4898  cfv 4902  (class class class)co 5512  cmpt2 5514  cc 6887  cr 6888  0cc0 6889  1c1 6890   + caddc 6892   · cmul 6894   < clt 7060  cle 7061  cmin 7182   / cdiv 7651  cn 7914  2c2 7964  cz 8245  cuz 8473  +crp 8583  seqcseq 9211  cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  resqrexlemsqa  9622
  Copyright terms: Public domain W3C validator