ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemex GIF version

Theorem resqrexlemex 9623
Description: Lemma for resqrex 9624. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemex (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝜑,𝑧,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem resqrexlemex
Dummy variables 𝑟 𝑛 𝑒 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . 3 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . 3 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . 3 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemcvg 9617 . 2 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
5 simprl 483 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝑟 ∈ ℝ)
62adantr 261 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 𝐴 ∈ ℝ)
73adantr 261 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝐴)
8 simprr 484 . . . . 5 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))
9 fveq2 5178 . . . . . . . . . . . 12 (𝑘 = 𝑐 → (𝐹𝑘) = (𝐹𝑐))
109breq1d 3774 . . . . . . . . . . 11 (𝑘 = 𝑐 → ((𝐹𝑘) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑒)))
119oveq1d 5527 . . . . . . . . . . . 12 (𝑘 = 𝑐 → ((𝐹𝑘) + 𝑒) = ((𝐹𝑐) + 𝑒))
1211breq2d 3776 . . . . . . . . . . 11 (𝑘 = 𝑐 → (𝑟 < ((𝐹𝑘) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑒)))
1310, 12anbi12d 442 . . . . . . . . . 10 (𝑘 = 𝑐 → (((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1413cbvralv 2533 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1514rexbii 2331 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
16 fveq2 5178 . . . . . . . . . 10 (𝑛 = 𝑏 → (ℤ𝑛) = (ℤ𝑏))
1716raleqdv 2511 . . . . . . . . 9 (𝑛 = 𝑏 → (∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒))))
1817cbvrexv 2534 . . . . . . . 8 (∃𝑛 ∈ ℕ ∀𝑐 ∈ (ℤ𝑛)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
1915, 18bitri 173 . . . . . . 7 (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
2019ralbii 2330 . . . . . 6 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)))
21 oveq2 5520 . . . . . . . . . 10 (𝑒 = 𝑎 → (𝑟 + 𝑒) = (𝑟 + 𝑎))
2221breq2d 3776 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑐) < (𝑟 + 𝑒) ↔ (𝐹𝑐) < (𝑟 + 𝑎)))
23 oveq2 5520 . . . . . . . . . 10 (𝑒 = 𝑎 → ((𝐹𝑐) + 𝑒) = ((𝐹𝑐) + 𝑎))
2423breq2d 3776 . . . . . . . . 9 (𝑒 = 𝑎 → (𝑟 < ((𝐹𝑐) + 𝑒) ↔ 𝑟 < ((𝐹𝑐) + 𝑎)))
2522, 24anbi12d 442 . . . . . . . 8 (𝑒 = 𝑎 → (((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2625rexralbidv 2350 . . . . . . 7 (𝑒 = 𝑎 → (∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎))))
2726cbvralv 2533 . . . . . 6 (∀𝑒 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑐) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
2820, 27bitri 173 . . . . 5 (∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
298, 28sylib 127 . . . 4 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝑟 + 𝑎) ∧ 𝑟 < ((𝐹𝑐) + 𝑎)))
301, 6, 7, 5, 29resqrexlemgt0 9618 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → 0 ≤ 𝑟)
311, 6, 7, 5, 8resqrexlemsqa 9622 . . 3 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → (𝑟↑2) = 𝐴)
32 breq2 3768 . . . . 5 (𝑥 = 𝑟 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑟))
33 oveq1 5519 . . . . . 6 (𝑥 = 𝑟 → (𝑥↑2) = (𝑟↑2))
3433eqeq1d 2048 . . . . 5 (𝑥 = 𝑟 → ((𝑥↑2) = 𝐴 ↔ (𝑟↑2) = 𝐴))
3532, 34anbi12d 442 . . . 4 (𝑥 = 𝑟 → ((0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) ↔ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)))
3635rspcev 2656 . . 3 ((𝑟 ∈ ℝ ∧ (0 ≤ 𝑟 ∧ (𝑟↑2) = 𝐴)) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
375, 30, 31, 36syl12anc 1133 . 2 ((𝜑 ∧ (𝑟 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑘) < (𝑟 + 𝑒) ∧ 𝑟 < ((𝐹𝑘) + 𝑒)))) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
384, 37rexlimddv 2437 1 (𝜑 → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wral 2306  wrex 2307  {csn 3375   class class class wbr 3764   × cxp 4343  cfv 4902  (class class class)co 5512  cmpt2 5514  cr 6888  0cc0 6889  1c1 6890   + caddc 6892   < clt 7060  cle 7061   / cdiv 7651  cn 7914  2c2 7964  cuz 8473  +crp 8583  seqcseq 9211  cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  resqrex  9624
  Copyright terms: Public domain W3C validator