Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dminxp GIF version

Theorem dminxp 4765
 Description: Domain of the intersection with a cross product. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
dminxp (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem dminxp
StepHypRef Expression
1 dfdm4 4527 . . . 4 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐴 × 𝐵))
2 cnvin 4731 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶(𝐴 × 𝐵))
3 cnvxp 4742 . . . . . . 7 (𝐴 × 𝐵) = (𝐵 × 𝐴)
43ineq2i 3135 . . . . . 6 (𝐶(𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
52, 4eqtri 2060 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) = (𝐶 ∩ (𝐵 × 𝐴))
65rneqi 4562 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
71, 6eqtri 2060 . . 3 dom (𝐶 ∩ (𝐴 × 𝐵)) = ran (𝐶 ∩ (𝐵 × 𝐴))
87eqeq1i 2047 . 2 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴)
9 rninxp 4764 . 2 (ran (𝐶 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥)
10 vex 2560 . . . . 5 𝑦 ∈ V
11 vex 2560 . . . . 5 𝑥 ∈ V
1210, 11brcnv 4518 . . . 4 (𝑦𝐶𝑥𝑥𝐶𝑦)
1312rexbii 2331 . . 3 (∃𝑦𝐵 𝑦𝐶𝑥 ↔ ∃𝑦𝐵 𝑥𝐶𝑦)
1413ralbii 2330 . 2 (∀𝑥𝐴𝑦𝐵 𝑦𝐶𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
158, 9, 143bitri 195 1 (dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   = wceq 1243  ∀wral 2306  ∃wrex 2307   ∩ cin 2916   class class class wbr 3764   × cxp 4343  ◡ccnv 4344  dom cdm 4345  ran crn 4346 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator