![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nqprm | GIF version |
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 6645. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprm | ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsmallnqq 6510 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 <Q 𝐴) | |
2 | vex 2560 | . . . . 5 ⊢ 𝑞 ∈ V | |
3 | breq1 3767 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
4 | 2, 3 | elab 2687 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
5 | 4 | rexbii 2331 | . . 3 ⊢ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑞 ∈ Q 𝑞 <Q 𝐴) |
6 | 1, 5 | sylibr 137 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) |
7 | archnqq 6515 | . . . . 5 ⊢ (𝐴 ∈ Q → ∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) | |
8 | df-rex 2312 | . . . . 5 ⊢ (∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ↔ ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q )) | |
9 | 7, 8 | sylib 127 | . . . 4 ⊢ (𝐴 ∈ Q → ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q )) |
10 | 1pi 6413 | . . . . . . . 8 ⊢ 1𝑜 ∈ N | |
11 | opelxpi 4376 | . . . . . . . . 9 ⊢ ((𝑛 ∈ N ∧ 1𝑜 ∈ N) → 〈𝑛, 1𝑜〉 ∈ (N × N)) | |
12 | enqex 6458 | . . . . . . . . . 10 ⊢ ~Q ∈ V | |
13 | 12 | ecelqsi 6160 | . . . . . . . . 9 ⊢ (〈𝑛, 1𝑜〉 ∈ (N × N) → [〈𝑛, 1𝑜〉] ~Q ∈ ((N × N) / ~Q )) |
14 | 11, 13 | syl 14 | . . . . . . . 8 ⊢ ((𝑛 ∈ N ∧ 1𝑜 ∈ N) → [〈𝑛, 1𝑜〉] ~Q ∈ ((N × N) / ~Q )) |
15 | 10, 14 | mpan2 401 | . . . . . . 7 ⊢ (𝑛 ∈ N → [〈𝑛, 1𝑜〉] ~Q ∈ ((N × N) / ~Q )) |
16 | df-nqqs 6446 | . . . . . . 7 ⊢ Q = ((N × N) / ~Q ) | |
17 | 15, 16 | syl6eleqr 2131 | . . . . . 6 ⊢ (𝑛 ∈ N → [〈𝑛, 1𝑜〉] ~Q ∈ Q) |
18 | breq2 3768 | . . . . . . 7 ⊢ (𝑟 = [〈𝑛, 1𝑜〉] ~Q → (𝐴 <Q 𝑟 ↔ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q )) | |
19 | 18 | rspcev 2656 | . . . . . 6 ⊢ (([〈𝑛, 1𝑜〉] ~Q ∈ Q ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
20 | 17, 19 | sylan 267 | . . . . 5 ⊢ ((𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
21 | 20 | exlimiv 1489 | . . . 4 ⊢ (∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1𝑜〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
22 | 9, 21 | syl 14 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
23 | vex 2560 | . . . . 5 ⊢ 𝑟 ∈ V | |
24 | breq2 3768 | . . . . 5 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
25 | 23, 24 | elab 2687 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
26 | 25 | rexbii 2331 | . . 3 ⊢ (∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
27 | 22, 26 | sylibr 137 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
28 | 6, 27 | jca 290 | 1 ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∃wex 1381 ∈ wcel 1393 {cab 2026 ∃wrex 2307 〈cop 3378 class class class wbr 3764 × cxp 4343 1𝑜c1o 5994 [cec 6104 / cqs 6105 Ncnpi 6370 ~Q ceq 6377 Qcnq 6378 <Q cltq 6383 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3or 886 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-eprel 4026 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-1o 6001 df-oadd 6005 df-omul 6006 df-er 6106 df-ec 6108 df-qs 6112 df-ni 6402 df-pli 6403 df-mi 6404 df-lti 6405 df-plpq 6442 df-mpq 6443 df-enq 6445 df-nqqs 6446 df-plqqs 6447 df-mqqs 6448 df-1nqqs 6449 df-rq 6450 df-ltnqqs 6451 |
This theorem is referenced by: nqprxx 6644 |
Copyright terms: Public domain | W3C validator |