Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  0el GIF version

Theorem 0el 3241
 Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
0el (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem 0el
StepHypRef Expression
1 risset 2352 . 2 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴 𝑥 = ∅)
2 eq0 3239 . . 3 (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦𝑥)
32rexbii 2331 . 2 (∃𝑥𝐴 𝑥 = ∅ ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
41, 3bitri 173 1 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ↔ wb 98  ∀wal 1241   = wceq 1243   ∈ wcel 1393  ∃wrex 2307  ∅c0 3224 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-dif 2920  df-nul 3225 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator