ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3reeanv Structured version   GIF version

Theorem 3reeanv 2474
Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
Assertion
Ref Expression
3reeanv (x A y B z 𝐶 (φ ψ χ) ↔ (x A φ y B ψ z 𝐶 χ))
Distinct variable groups:   φ,y,z   ψ,x,z   χ,x,y   y,A   x,B,z   x,𝐶,y
Allowed substitution hints:   φ(x)   ψ(y)   χ(z)   A(x,z)   B(y)   𝐶(z)

Proof of Theorem 3reeanv
StepHypRef Expression
1 r19.41v 2460 . . 3 (x A (y B (φ ψ) z 𝐶 χ) ↔ (x A y B (φ ψ) z 𝐶 χ))
2 reeanv 2473 . . . 4 (x A y B (φ ψ) ↔ (x A φ y B ψ))
32anbi1i 431 . . 3 ((x A y B (φ ψ) z 𝐶 χ) ↔ ((x A φ y B ψ) z 𝐶 χ))
41, 3bitri 173 . 2 (x A (y B (φ ψ) z 𝐶 χ) ↔ ((x A φ y B ψ) z 𝐶 χ))
5 df-3an 886 . . . . 5 ((φ ψ χ) ↔ ((φ ψ) χ))
652rexbii 2327 . . . 4 (y B z 𝐶 (φ ψ χ) ↔ y B z 𝐶 ((φ ψ) χ))
7 reeanv 2473 . . . 4 (y B z 𝐶 ((φ ψ) χ) ↔ (y B (φ ψ) z 𝐶 χ))
86, 7bitri 173 . . 3 (y B z 𝐶 (φ ψ χ) ↔ (y B (φ ψ) z 𝐶 χ))
98rexbii 2325 . 2 (x A y B z 𝐶 (φ ψ χ) ↔ x A (y B (φ ψ) z 𝐶 χ))
10 df-3an 886 . 2 ((x A φ y B ψ z 𝐶 χ) ↔ ((x A φ y B ψ) z 𝐶 χ))
114, 9, 103bitr4i 201 1 (x A y B z 𝐶 (φ ψ χ) ↔ (x A φ y B ψ z 𝐶 χ))
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98   w3a 884  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator