Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3reeanv | Unicode version |
Description: Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.) |
Ref | Expression |
---|---|
3reeanv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 2466 | . . 3 | |
2 | reeanv 2479 | . . . 4 | |
3 | 2 | anbi1i 431 | . . 3 |
4 | 1, 3 | bitri 173 | . 2 |
5 | df-3an 887 | . . . . 5 | |
6 | 5 | 2rexbii 2333 | . . . 4 |
7 | reeanv 2479 | . . . 4 | |
8 | 6, 7 | bitri 173 | . . 3 |
9 | 8 | rexbii 2331 | . 2 |
10 | df-3an 887 | . 2 | |
11 | 4, 9, 10 | 3bitr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wb 98 w3a 885 wrex 2307 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |