Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reeanv Unicode version

Theorem reeanv 2479
 Description: Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
Assertion
Ref Expression
reeanv
Distinct variable groups:   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem reeanv
StepHypRef Expression
1 nfv 1421 . 2
2 nfv 1421 . 2
31, 2reean 2478 1
 Colors of variables: wff set class Syntax hints:   wa 97   wb 98  wrex 2307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312 This theorem is referenced by:  3reeanv  2480  fliftfun  5436  tfrlem5  5930  eroveu  6197  erovlem  6198  genprndl  6619  genprndu  6620  ltpopr  6693  ltsopr  6694  cauappcvgprlemdisj  6749  caucvgprlemdisj  6772  caucvgprprlemdisj  6800  qbtwnzlemex  9105  rebtwn2z  9109
 Copyright terms: Public domain W3C validator