ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexbii Structured version   Unicode version

Theorem 2rexbii 2327
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
ralbii.1
Assertion
Ref Expression
2rexbii

Proof of Theorem 2rexbii
StepHypRef Expression
1 ralbii.1 . . 3
21rexbii 2325 . 2
32rexbii 2325 1
Colors of variables: wff set class
Syntax hints:   wb 98  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-rex 2306
This theorem is referenced by:  3reeanv  2474  4fvwrd4  8767
  Copyright terms: Public domain W3C validator