ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexbii Unicode version

Theorem 2rexbii 2330
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995.)
Hypothesis
Ref Expression
ralbii.1
Assertion
Ref Expression
2rexbii

Proof of Theorem 2rexbii
StepHypRef Expression
1 ralbii.1 . . 3
21rexbii 2328 . 2
32rexbii 2328 1
Colors of variables: wff set class
Syntax hints:   wb 98  wrex 2304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-rex 2309
This theorem is referenced by:  3reeanv  2477  4fvwrd4  8859
  Copyright terms: Public domain W3C validator