Step | Hyp | Ref
| Expression |
1 | | eluni2 3584 |
. . . . 5
⊢ (𝑧 ∈ ∪ 𝐴
↔ ∃𝑦 ∈
𝐴 𝑧 ∈ 𝑦) |
2 | 1 | anbi1i 431 |
. . . 4
⊢ ((𝑧 ∈ ∪ 𝐴
∧ 𝑧 ∈ 𝐵) ↔ (∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵)) |
3 | | elin 3126 |
. . . 4
⊢ (𝑧 ∈ (∪ 𝐴
∩ 𝐵) ↔ (𝑧 ∈ ∪ 𝐴
∧ 𝑧 ∈ 𝐵)) |
4 | | ancom 253 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝑥 ∧ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)) ↔ (∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥)) |
5 | | r19.41v 2466 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝐴 (𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥)) |
6 | 4, 5 | bitr4i 176 |
. . . . . . 7
⊢ ((𝑧 ∈ 𝑥 ∧ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)) ↔ ∃𝑦 ∈ 𝐴 (𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥)) |
7 | 6 | exbii 1496 |
. . . . . 6
⊢
(∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)) ↔ ∃𝑥∃𝑦 ∈ 𝐴 (𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥)) |
8 | | rexcom4 2577 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 ∃𝑥(𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑥∃𝑦 ∈ 𝐴 (𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥)) |
9 | 7, 8 | bitr4i 176 |
. . . . 5
⊢
(∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)) ↔ ∃𝑦 ∈ 𝐴 ∃𝑥(𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥)) |
10 | | vex 2560 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
11 | 10 | inex1 3891 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝐵) ∈ V |
12 | | eleq2 2101 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 ∩ 𝐵) → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ (𝑦 ∩ 𝐵))) |
13 | 11, 12 | ceqsexv 2593 |
. . . . . . . 8
⊢
(∃𝑥(𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥) ↔ 𝑧 ∈ (𝑦 ∩ 𝐵)) |
14 | | elin 3126 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑦 ∩ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵)) |
15 | 13, 14 | bitri 173 |
. . . . . . 7
⊢
(∃𝑥(𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵)) |
16 | 15 | rexbii 2331 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 ∃𝑥(𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑦 ∈ 𝐴 (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵)) |
17 | | r19.41v 2466 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵) ↔ (∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵)) |
18 | 16, 17 | bitri 173 |
. . . . 5
⊢
(∃𝑦 ∈
𝐴 ∃𝑥(𝑥 = (𝑦 ∩ 𝐵) ∧ 𝑧 ∈ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵)) |
19 | 9, 18 | bitri 173 |
. . . 4
⊢
(∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)) ↔ (∃𝑦 ∈ 𝐴 𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝐵)) |
20 | 2, 3, 19 | 3bitr4i 201 |
. . 3
⊢ (𝑧 ∈ (∪ 𝐴
∩ 𝐵) ↔
∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵))) |
21 | | eluniab 3592 |
. . 3
⊢ (𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 ∈
𝐴 𝑥 = (𝑦 ∩ 𝐵)} ↔ ∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵))) |
22 | 20, 21 | bitr4i 176 |
. 2
⊢ (𝑧 ∈ (∪ 𝐴
∩ 𝐵) ↔ 𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 ∈
𝐴 𝑥 = (𝑦 ∩ 𝐵)}) |
23 | 22 | eqriv 2037 |
1
⊢ (∪ 𝐴
∩ 𝐵) = ∪ {𝑥
∣ ∃𝑦 ∈
𝐴 𝑥 = (𝑦 ∩ 𝐵)} |